skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Communication Requirements and Concept of Operation for Sensor Networks

  1. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
OSTI Identifier:
Report Number(s):
NT0107000; NENT013
DOE Contract Number:
Resource Type:
Technical Report
Country of Publication:
United States
power harvesting wireless communicaitons nuclear power

Citation Formats

Clayton, Dwight A. Communication Requirements and Concept of Operation for Sensor Networks. United States: N. p., 2013. Web. doi:10.2172/1095148.
Clayton, Dwight A. Communication Requirements and Concept of Operation for Sensor Networks. United States. doi:10.2172/1095148.
Clayton, Dwight A. Sun . "Communication Requirements and Concept of Operation for Sensor Networks". United States. doi:10.2172/1095148.
title = {Communication Requirements and Concept of Operation for Sensor Networks},
author = {Clayton, Dwight A},
abstractNote = {},
doi = {10.2172/1095148},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Sep 01 00:00:00 EDT 2013},
month = {Sun Sep 01 00:00:00 EDT 2013}

Technical Report:

Save / Share:
  • A national security need as well as environmental monitoring need exists for networks of sensors. The advantages of a network of sensors over a single sensor are improved range, sensitivity, directionality, and data readability. Depending upon the particular application, sensors can be acoustic, chemical, biological, thermal or inertial. A major desire in these sensor networks is to have the individual sensor and associated electronics small and low enough in power that the battery can also be small and of long life. Smaller, low power sensor nodes can allow more nodes per network. A typical network for security applications is depictedmore » in Figure 1. Here a number of sensor nodes are deployed around a central hub node in a star configuration. In this scenario the hubs communicate with each other and ultimately relay information to a satellite. Future networks might follow this scenario or some other network architecture such as a hopping network where individual nodes communicate directly with each other. The focus of our research has been on development of the small low power nodes and less on the overall network topology. However, some consideration of the network must be given when designing the nodes and some consideration of the nodes must be given when designing the network. An individual sensor node contains not only the sensor but also the sensor interface electronics, analog to digital (A/D) converter, logic, RF communication link, antenna, and the battery. Future nodes will also contain some form of signal processing to allow more sophisticated network architectures. The FY98 goal for this project was to make a sensor node with a physical form factor of a 2 inch x 2 inch x 2 inch cube.« less
  • The Idaho National Laboratory Lead-Bismuth Eutectic Test Facility will advance the state of nuclear technology relative to heavy-metal coolants (primarily Pb and Pb-Bi), thereby allowing the U.S. to maintain the pre-eminent position in overseas markets and a future domestic market. The end results will be a better qualitative understanding and quantitative measure of the thermal physics and chemistry conditions in the molten metal systems for varied flow conditions (single and multiphase), flow regime transitions, heat input methods, pumping requirements for varied conditions and geometries, and corrosion performance. Furthering INL knowledge in these areas is crucial to sustaining a competitive globalmore » position. This fundamental heavy-metal research supports the National Energy Policy Development Group’s stated need for energy systems to support electrical generation.1 The project will also assist the Department of Energy in achieving goals outlined in the Nuclear Energy Research Advisory Committee Long Term Nuclear Technology Research and Development Plan,2 the Generation IV Roadmap for Lead Fast Reactor development, and Advanced Fuel Cycle Initiative research and development. This multi-unit Lead-Bismuth Eutectic Test Facility with its flexible and reconfigurable apparatus will maintain and extend the U.S. nuclear knowledge base, while educating young scientists and engineers. The uniqueness of the Lead-Bismuth Eutectic Test Facility is its integrated Pool Unit and Storage Unit. This combination will support large-scale investigation of structural and fuel cladding material compatibility issues with heavy-metal coolants, oxygen chemistry control, and thermal hydraulic physics properties. Its ability to reconfigure flow conditions and piping configurations to more accurately approximate prototypical reactor designs will provide a key resource for Lead Fast Reactor research and development. The other principal elements of the Lead-Bismuth Eutectic Test Facility (in addition to the Pool Unit and Storage Unit) are the Bench Scale Unit and Supporting Systems, principal of which are the O2 Sensor/Calibration System, Feed System, Transfer System, Off- Gas System, Purge and Evacuation System, Oxygen Sensor and Control System, Data Acquisition and Control System, and the Safety Systems. Parallel and/or independent corrosion studies and convective heat transfer experiments for cylindrical and annular geometries will support investigation of heat transfer phenomena into the secondary side. In addition, molten metal pumping concepts and power requirements will be measured for future design use.« less
  • Three analytical models were developed for inexpensive and fast evaluation of two performance time delays and the data rate of a logical link between two end users in a sample computer network configuration. Models were specifically developed for a small scale network used for control of an industrial plant, using a three node configuration for simplicity, while still retaining all useful components for general cases. The resulting models may be applied outside the area for which they were developed, and can also be extended without theoretical difficulty to encompass more complex network configurations.
  • For many communication applications with time constraints (e.g., transmission of packetized voice messages), a critical performance measure is the percentage of messages transmitted within a given amount of time after their generation at the transmitting station. This report presents a random-access algorithm (RAA) suitable for time-constrained applications. Performance analysis demonstrates that significant message-delay improvement is attained at the expense of minimal traffic loss. Also considered is the case of noisy channels. The noise effect appears at erroneously observed channel feedback. Error sensitivity analysis shows that the proposed random-access algorithm is insensitive to feedback channel errors. Window Random-Access Algorithms (RAAs) aremore » considered next. These algorithms constitute an important subclass of Multiple-Access Algorithms (MAAs); they are distributive, and they attain high throughput and low delays by controlling the number of simultaneously transmitting users.« less