skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Non-axisymmetric equilibrium reconstruction for stellarators, reversed field pinches and tokamaks

Abstract

Axisymmetric equilibrium reconstruction using magnetohydrodynamic equilibrium solutions to the Grad Shafranov equation has long been an important tool for interpreting tokamak experiments. This paper describes recent results in non-axisymmetric (three-dimensional) equilibrium reconstruction of nominally axisymmetric plasmas (tokamaks and reversed field pinches (RFPs)), and fully non-axisymmetric plasmas (stellarators). Results from applying the V3FIT code to CTH and HSX stellarator plasmas, RFX-mod RFP plasmas and the DIII-D tokamak are presented.

Authors:
 [1];  [2];  [1];  [3];  [4];  [1];  [5];  [1];  [6];  [5];  [7];  [1];  [8];  [4];  [1];  [7]
  1. Auburn University, Auburn, Alabama
  2. University of Wisconsin, Madison
  3. EURATOM / ENEA, Italy
  4. Oak Ridge National Laboratory (ORNL)
  5. ORNL
  6. General Atomics, San Diego
  7. Association EURATOM ENEA Fusion, Consorzio RFX, Padua, Italy
  8. Princeton Plasma Physics Laboratory (PPPL)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1093092
DOE Contract Number:  
DE-AC05-00OR22725
Resource Type:
Journal Article
Journal Name:
Nuclear Fusion
Additional Journal Information:
Journal Volume: 53; Journal Issue: 8; Journal ID: ISSN 0029--5515
Country of Publication:
United States
Language:
English

Citation Formats

Hanson, James D., Anderson, D. T., Cianciosa, M., Franz, P., Harris, J. H., Hartwell, G. H., Hirshman, Steven Paul, Knowlton, Stephen F., Lao, Lang L., Lazarus, Edward Alan, Marrelli, L., Maurer, D. A., Schmitt, J. C., Sontag, A. C., Stevenson, B. A., and Terranova, D. Non-axisymmetric equilibrium reconstruction for stellarators, reversed field pinches and tokamaks. United States: N. p., 2013. Web. doi:10.1088/0029-5515/53/8/083016.
Hanson, James D., Anderson, D. T., Cianciosa, M., Franz, P., Harris, J. H., Hartwell, G. H., Hirshman, Steven Paul, Knowlton, Stephen F., Lao, Lang L., Lazarus, Edward Alan, Marrelli, L., Maurer, D. A., Schmitt, J. C., Sontag, A. C., Stevenson, B. A., & Terranova, D. Non-axisymmetric equilibrium reconstruction for stellarators, reversed field pinches and tokamaks. United States. doi:10.1088/0029-5515/53/8/083016.
Hanson, James D., Anderson, D. T., Cianciosa, M., Franz, P., Harris, J. H., Hartwell, G. H., Hirshman, Steven Paul, Knowlton, Stephen F., Lao, Lang L., Lazarus, Edward Alan, Marrelli, L., Maurer, D. A., Schmitt, J. C., Sontag, A. C., Stevenson, B. A., and Terranova, D. Tue . "Non-axisymmetric equilibrium reconstruction for stellarators, reversed field pinches and tokamaks". United States. doi:10.1088/0029-5515/53/8/083016.
@article{osti_1093092,
title = {Non-axisymmetric equilibrium reconstruction for stellarators, reversed field pinches and tokamaks},
author = {Hanson, James D. and Anderson, D. T. and Cianciosa, M. and Franz, P. and Harris, J. H. and Hartwell, G. H. and Hirshman, Steven Paul and Knowlton, Stephen F. and Lao, Lang L. and Lazarus, Edward Alan and Marrelli, L. and Maurer, D. A. and Schmitt, J. C. and Sontag, A. C. and Stevenson, B. A. and Terranova, D.},
abstractNote = {Axisymmetric equilibrium reconstruction using magnetohydrodynamic equilibrium solutions to the Grad Shafranov equation has long been an important tool for interpreting tokamak experiments. This paper describes recent results in non-axisymmetric (three-dimensional) equilibrium reconstruction of nominally axisymmetric plasmas (tokamaks and reversed field pinches (RFPs)), and fully non-axisymmetric plasmas (stellarators). Results from applying the V3FIT code to CTH and HSX stellarator plasmas, RFX-mod RFP plasmas and the DIII-D tokamak are presented.},
doi = {10.1088/0029-5515/53/8/083016},
journal = {Nuclear Fusion},
issn = {0029--5515},
number = 8,
volume = 53,
place = {United States},
year = {2013},
month = {1}
}