skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Condensation Risk of Mechanically Attached Roof Systems in Cold Climate Zones

Conference ·
OSTI ID:1093054

A white roof, cool roof, is constructed to decrease thermal loads from solar radiation, therefore saving energy by decreasing the cooling demands. Unfortunately, cool roofs with mechanically attached membrane, have shown to have a higher risk of intermediate condensation in the materials below the membrane in certain climates (Ennis & Kehrer, 2011) and in comparisons with similar construction with a darker exterior surface (Bludau, Zirkelbach, & Kuenzel, 2009). As a consequence, questions have been raised regarding the sustainability and reliability of using cool roof membranes in Northern U.S. climate zones. A white roof surface reflects more of the incident solar radiation in comparisons with a dark surface, which makes a distinguished difference on the surface temperature of the roof. However, flat roofs with either a light or dark surface and if facing a clear sky, are constantly losing energy to the sky due to the exchange of infrared radiation. This phenomenon exists both during the night and the day. During the day, if the sun shines on the roof surface, the exchange of infrared radiation typically becomes insignificant. During nights and in cold climates, the temperature difference between the roof surface and the sky can deviate up to 20 C (Hagentoft, 2001) which could result in a very cold surface temperature compared to the ambient temperature. Further, a colder surface temperature of the roof increases the energy loss and the risk of condensation in the building materials below the membrane. In conclusion, both light and dark coated roof membranes are cooled by the infrared radiation exchange during the night, though a darker membrane is more heated by the solar radiation during the day, thus decreasing the risk of condensation. The phenomenon of night time cooling from the sky and the lack of solar gains during the day is not likely the exclusive problem concerning the risk of condensation in cool roofs with mechanically attached membranes. Roof systems with thermoplastic membranes are prone to be more effected by interior air intrusion into the roof construction; both due to the wind induced pressure differences and due to the flexibility and elasticity of the membrane (Molleti, Baskaran, Kalinger, & Beaulieu, 2011). Depending on the air permeability of the material underneath the membrane, wind forces increase the risk of fluttering (also referred as billowing) of the thermoplastic membrane. Expectably, the wind induced pressure differences creates a convective air flow into the construction i.e. Page 2 air intrusion. If the conditions are right, moisture from the exchanging air may condensate on surfaces with a temperature below dew-point. The definite path of convective airflows through the building envelope is usually very difficult to determine and therefore simplified models (K nzel, Zirkelbach, & Scfafaczek, 2011) help to estimate an additional moisture loads as a result of the air intrusion. The wind uplifting pressure in combination with wind gusts are important factors for a fluttering roof. Unfortunately, the effect from a fluctuating wind is difficult to estimate as this is a highly dynamic phenomenon and existing standards (ASTM, 2011a) only take into account a steady state approach i.e. there is no guidance or regulations on how to estimate the air intrusion rate. Obviously, a more detailed knowledge on the hygrothermal performance of mechanically attached cool roof system is requested; in consideration to varying surface colors, roof air tightness, climate zones and indoor moisture supply.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1093054
Resource Relation:
Conference: RCI 2013 Convention, Orlando, FL, USA, 20130314, 20130319
Country of Publication:
United States
Language:
English

Similar Records

Cool Roof Systems; What is the Condensation Risk?
Conference · Wed Jan 01 00:00:00 EST 2014 · OSTI ID:1093054

Roof-integrated radiative air-cooling system to achieve cooler attic for building energy saving
Journal Article · Mon Sep 23 00:00:00 EDT 2019 · Energy and Buildings · OSTI ID:1093054

Performance evaluation of a passively heated and cooled house
Technical Report · Sun Jul 01 00:00:00 EDT 1979 · OSTI ID:1093054

Related Subjects