skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CHALLENGES FACING HIGH POWER PROTON ACCELERATORS

Abstract

This presentation will provide an overview of the challenges of high power proton accelerators such as SNS, J-PARC, etc., and what we have learned from recent experiences. Beam loss mechanisms and methods to mitigate beam loss will also be discussed.

Authors:
 [1]
  1. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1092279
DOE Contract Number:
DE-AC05-00OR22725
Resource Type:
Conference
Resource Relation:
Conference: International Particle Accelerator Conference 2013, Shanghai, China, 20130512, 20130517
Country of Publication:
United States
Language:
English

Citation Formats

Plum, Michael A. CHALLENGES FACING HIGH POWER PROTON ACCELERATORS. United States: N. p., 2013. Web.
Plum, Michael A. CHALLENGES FACING HIGH POWER PROTON ACCELERATORS. United States.
Plum, Michael A. 2013. "CHALLENGES FACING HIGH POWER PROTON ACCELERATORS". United States. doi:.
@article{osti_1092279,
title = {CHALLENGES FACING HIGH POWER PROTON ACCELERATORS},
author = {Plum, Michael A},
abstractNote = {This presentation will provide an overview of the challenges of high power proton accelerators such as SNS, J-PARC, etc., and what we have learned from recent experiences. Beam loss mechanisms and methods to mitigate beam loss will also be discussed.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2013,
month = 1
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • It has become increasingly important to address the issues of operational reliability and availability of an accelerator complex early in its design and construction phases. In this context, reliability addresses the mean time between failures and the failure rate, and availability takes into account the failure rate as well as the length of time required to repair the failure. Methods to reduce failure rates include reduction of the number of components and over-design of certain key components. Reduction of the on-line repair time can be achieved by judiciously designed hardware, quick-service spare systems, and redundancy. In addition, provisions for easymore » inspection and maintainability are important for both reduction of the failure rate as well as reduction of the time to repair. The radiation safety exposure principle of ALARA (As Low As Reasonably Achievable) is easier to comply with when easy inspection capability and easy maintainability are incorporated into the design. Discussions of past experience in improving accelerator availability, some recent developments, and potential R and D items are presented.« less
  • The first mention of linear acceleration was in a paper by G. Ising in 1924 in which he postulated the acceleration of positive ions induced by spark discharges which produced electric fields in gaps between a series of {open_quotes}drift tubes{close_quotes}. Ising apparently was not able to demonstrate his concept, most likely due to the limited state of electronic devices. Ising`s work was followed by a seminal paper by R. Wideroe in 1928 in which he demonstrated the first linear accelerator. Wideroe was able to accelerate sodium or potassium ions to 50 keV of energy using drift tubes connected alternately tomore » high frequency waves and to ground. Nuclear physics during this period was interested in accelerating protons, deuterons, electrons and alpha particles and not heavy ions like sodium or potassium. To accelerate the light ions required much higher frequencies than available at that time. So linear accelerators were not pursued heavily at that time. Research continued during the 1930s but the development of high frequency RF tubes for radar applications in World War 2 opened the potential for RF linear accelerators after the war. The Berkeley laboratory of E. 0. Lawrence under the leadership of Luis Alvarez developed a new linear proton accelerator concept that utilized drift tubes that required a full RF period to pass through as compared to the earlier concepts. This development resulted in the historic Berkeley 32 MeV proton linear accelerator which incorporated the {open_quotes}Alvarez drift tube{close_quotes} as the basic acceleration scheme using surplus 200 MHz radar components.« less
  • There are many applications requiring high power proton accelerators of various kinds. However, each type of proton accelerator can only provide beam with certain characteristics, hence the match of accelerators and their applications need careful evaluation. In this talk, the beam parameters and performance limitations of linac, cyclotron, synchrotron, and FFAG accelerators are studied and their relative merits for application in neutron, muon, neutrino, and ADS will be assessed in terms of beam energy, intensity, bunch length, repetition rate, and beam power requirements. A possible match between the applications and the accelerator of choice is presented in a matrix form.more » The accelerator physics and technology issues and challenges involved will also be discussed.« less