skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration

Abstract

Gas Technology Institute (GTI) and Cleaver-Brooks developed a new gas-fired steam generation system the Super Boiler for increased energy efficiency, reduced equipment size, and reduced emissions. The system consists of a firetube boiler with a unique staged furnace design, a two-stage burner system with engineered internal recirculation and inter-stage cooling integral to the boiler, unique convective pass design with extended internal surfaces for enhanced heat transfer, and a novel integrated heat recovery system to extract maximum energy from the flue gas. With these combined innovations, the Super Boiler technical goals were set at 94% HHV fuel efficiency, operation on natural gas with <5 ppmv NOx (referenced to 3%O2), and 50% smaller than conventional boilers of similar steam output. To demonstrate these technical goals, the project culminated in the industrial demonstration of this new high-efficiency technology on a 300 HP boiler at Clement Pappas, a juice bottler located in Ontario, California. The Super Boiler combustion system is based on two stage combustion which combines air staging, internal flue gas recirculation, inter-stage cooling, and unique fuel-air mixing technology to achieve low emissions rather than external flue gas recirculation which is most commonly used today. The two-stage combustion provides lower emissions because ofmore » the integrated design of the boiler and combustion system which permit precise control of peak flame temperatures in both primary and secondary stages of combustion. To reduce equipment size, the Super Boiler's dual furnace design increases radiant heat transfer to the furnace walls, allowing shorter overall furnace length, and also employs convective tubes with extended surfaces that increase heat transfer by up to 18-fold compared to conventional bare tubes. In this way, a two-pass boiler can achieve the same efficiency as a traditional three or four-pass firetube boiler design. The Super Boiler is consequently up to 50% smaller in footprint, has a smaller diameter, and is up to 50% lower in weight, resulting in very compact design with reduced material cost and labor costs, while requiring less boiler room floor space. For enhanced energy efficiency, the heat recovery system uses a transport membrane condenser (TMC), a humidifying air heater (HAH), and a split-stage economizer to extract maximum energy from the flue gas. The TMC is a new innovation that pulls a major portion of water vapor produced by the combustion process from the flue gases along with its sensible and latent heat. This results in nearly 100% transfer of heat to the boiler feed water. The HAH improves the effectiveness of the TMC, particularly in steam systems that do not have a large amount of cold makeup water. In addition, the HAH humidifies the combustion air to reduce NOx formation. The split-stage economizer preheats boiler feed water in the same way as a conventional economizer, but extracts more heat by working in tandem with the TMC and HAH to reduce flue gas temperature. These components are designed to work synergistically to achieve energy efficiencies of 92-94% which is 10-15% higher than today's typical firetube boilers.« less

Authors:
;
Publication Date:
Research Org.:
Gas Technology Institute
Sponsoring Org.:
USDOE EE Office of Industrial Technologies (EE-2F)
OSTI Identifier:
1073770
Report Number(s):
DOE/ID/13904FINALREV
15311
DOE Contract Number:
FC36-00ID13904
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
03 NATURAL GAS; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; Super Boiler, Transport Membrane, Heat Recovery, Energy Efficiency, Advanced Boiler, Two-stage Boiler

Citation Formats

Liss, William E, and Cygan, David F. Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration. United States: N. p., 2013. Web. doi:10.2172/1073770.
Liss, William E, & Cygan, David F. Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration. United States. doi:10.2172/1073770.
Liss, William E, and Cygan, David F. Wed . "Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration". United States. doi:10.2172/1073770. https://www.osti.gov/servlets/purl/1073770.
@article{osti_1073770,
title = {Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration},
author = {Liss, William E and Cygan, David F},
abstractNote = {Gas Technology Institute (GTI) and Cleaver-Brooks developed a new gas-fired steam generation system the Super Boiler for increased energy efficiency, reduced equipment size, and reduced emissions. The system consists of a firetube boiler with a unique staged furnace design, a two-stage burner system with engineered internal recirculation and inter-stage cooling integral to the boiler, unique convective pass design with extended internal surfaces for enhanced heat transfer, and a novel integrated heat recovery system to extract maximum energy from the flue gas. With these combined innovations, the Super Boiler technical goals were set at 94% HHV fuel efficiency, operation on natural gas with <5 ppmv NOx (referenced to 3%O2), and 50% smaller than conventional boilers of similar steam output. To demonstrate these technical goals, the project culminated in the industrial demonstration of this new high-efficiency technology on a 300 HP boiler at Clement Pappas, a juice bottler located in Ontario, California. The Super Boiler combustion system is based on two stage combustion which combines air staging, internal flue gas recirculation, inter-stage cooling, and unique fuel-air mixing technology to achieve low emissions rather than external flue gas recirculation which is most commonly used today. The two-stage combustion provides lower emissions because of the integrated design of the boiler and combustion system which permit precise control of peak flame temperatures in both primary and secondary stages of combustion. To reduce equipment size, the Super Boiler's dual furnace design increases radiant heat transfer to the furnace walls, allowing shorter overall furnace length, and also employs convective tubes with extended surfaces that increase heat transfer by up to 18-fold compared to conventional bare tubes. In this way, a two-pass boiler can achieve the same efficiency as a traditional three or four-pass firetube boiler design. The Super Boiler is consequently up to 50% smaller in footprint, has a smaller diameter, and is up to 50% lower in weight, resulting in very compact design with reduced material cost and labor costs, while requiring less boiler room floor space. For enhanced energy efficiency, the heat recovery system uses a transport membrane condenser (TMC), a humidifying air heater (HAH), and a split-stage economizer to extract maximum energy from the flue gas. The TMC is a new innovation that pulls a major portion of water vapor produced by the combustion process from the flue gases along with its sensible and latent heat. This results in nearly 100% transfer of heat to the boiler feed water. The HAH improves the effectiveness of the TMC, particularly in steam systems that do not have a large amount of cold makeup water. In addition, the HAH humidifies the combustion air to reduce NOx formation. The split-stage economizer preheats boiler feed water in the same way as a conventional economizer, but extracts more heat by working in tandem with the TMC and HAH to reduce flue gas temperature. These components are designed to work synergistically to achieve energy efficiencies of 92-94% which is 10-15% higher than today's typical firetube boilers.},
doi = {10.2172/1073770},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Apr 17 00:00:00 EDT 2013},
month = {Wed Apr 17 00:00:00 EDT 2013}
}

Technical Report:

Save / Share:
  • The design, operation and performance of the CONCAVER, a device which uses high pressure water ejected from a rotating or stationary nozzle to clean and descale the inside of industrial boiler tubes, are discussed in detail. This descaler and its associated equipment has been field tested. The results showed that 8000 psi pressure is required to remove scale from the boiler tubes, rotating nozzles result in the best cleaning of tubes with greater than 1 1/2 in.-dia. and the cleaning time is 40% faster than with conventional cleaning methods. (LCL) a
  • As a deliverable of the project, ABB Environmental Systems has written this subsystem test plan to outline and detail activities to be undertaken in Tasks 10 and 11 of the Low Emissions Boiler System project. This subsystem test plan includes the budget and schedule for the construction, modification and operation of the subsystem test unit. This subsystem test plan also discusses securing of all applicable construction and operating permits, completing all necessary agreements with any host facilities, management procedures for monitoring and controlling all procurement and construction activities, implementation of Quality Assurance/Quality Control (QA/QC) measures, data acquisition during operations, datamore » analysis, and the startup and shutdown procedures of the test unit. The subsystem test plan is part of the updated Phase II RD&T Plan.« less
  • Frito-Lay is working to reduce carbon emissions from their manufacturing plants. As part of this effort, they invested in a biomass-fired boiler at the Topeka, Kansas, plant. Frito-Lay partnered with Burns & McDonnell Engineering, Inc. and CPL Systems, Inc., to design and construct a steam producing boiler using carbon neutral fuels such as wood wastes (e.g. tree bark), shipping pallets, and used rubber vehicle tires. The U.S. Department of Energy (DOE) joined with Frito-Lay, Burns & McDonnell, and CPL to analyze the reductions in carbon dioxide (CO 2) emissions that result from use of biomass-fired boilers in the food manufacturingmore » environment. DOE support provided for the data collection and analysis, and reporting necessary to evaluate boiler efficiencies and reductions in CO 2 emissions. The Frito-Lay biomass-fired boiler has resulted in significant reductions in CO 2 emissions from the Topeka production facility. The use of natural gas has been reduced by 400 to 420 million standard cubic feet per year with corresponding reductions of 24,000 to 25,000 tons of CO 2. The boiler does require auxiliary functions, however, that are unnecessary for a gas-fired boiler. These include heavy motors and fans for moving fuel and firing the boiler, trucks and equipment for delivering the fuel and moving at the boiler plant, and chippers for preparing the fuel prior to delivery. Each of these operations requires the combustion of fossil fuels or electricity and has associated CO 2 emissions. Even after accounting for each of these auxiliary processes, however, the biomass-fired boiler results in net emission reductions of 22,500 to 23,500 tons of CO 2 per year.« less
  • The objective of this program is to develop an advanced coal- combustion system capable of being retrofitted to industrial boilers originally designed for firing natural gas, distillate, and/or residual oil. Through the use of beneficiated coal fuel and advanced combustion technology, the program was to produce a combustion system which is reliable, simple to operate, and incorporates significant reductions in NO{sub x}, SO{sub x}, and particulate emissions over a base coal case. (VC)