skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Non-Destructive Testing A Developing Tool in Science and Engineering

Abstract

Non-destructive testing (NDT), sometimes also known as non-destructive inspection (NDI) or non-destructive examination (NDE), has been applied to solve a wide range of science and industry problems including construction, aerospace, nuclear engineering, manufacturing, space exploration, art objects, forensic studies, biological and medical fields, etc. Without any permanent changing or alteration of testing objects, NDT methods provide great advantages such as increased testing reliability, efficiency, and safety, as well as reduced time and cost. Since the second half of the 20th century, NDT technology has seen significant growth. Depending on the physical properties being measured, NDT techniques can be classified into several branches. This article will provide a brief overview of commonly used NDT methods and their up-to-date progresses including optical examination, radiography, acoustic emission, ultrasonic testing and eddy current testing. For extended reviews on many presently used NDT methods, please refer to articles by Mullins [1, 2].

Authors:
 [1]
  1. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1073681
DOE Contract Number:
DE-AC05-00OR22725
Resource Type:
Journal Article
Resource Relation:
Journal Name: Advanced Materials and Processes; Journal Volume: 171; Journal Issue: 4
Country of Publication:
United States
Language:
English

Citation Formats

Lin, Lianshan. Non-Destructive Testing A Developing Tool in Science and Engineering. United States: N. p., 2013. Web.
Lin, Lianshan. Non-Destructive Testing A Developing Tool in Science and Engineering. United States.
Lin, Lianshan. Tue . "Non-Destructive Testing A Developing Tool in Science and Engineering". United States. doi:.
@article{osti_1073681,
title = {Non-Destructive Testing A Developing Tool in Science and Engineering},
author = {Lin, Lianshan},
abstractNote = {Non-destructive testing (NDT), sometimes also known as non-destructive inspection (NDI) or non-destructive examination (NDE), has been applied to solve a wide range of science and industry problems including construction, aerospace, nuclear engineering, manufacturing, space exploration, art objects, forensic studies, biological and medical fields, etc. Without any permanent changing or alteration of testing objects, NDT methods provide great advantages such as increased testing reliability, efficiency, and safety, as well as reduced time and cost. Since the second half of the 20th century, NDT technology has seen significant growth. Depending on the physical properties being measured, NDT techniques can be classified into several branches. This article will provide a brief overview of commonly used NDT methods and their up-to-date progresses including optical examination, radiography, acoustic emission, ultrasonic testing and eddy current testing. For extended reviews on many presently used NDT methods, please refer to articles by Mullins [1, 2].},
doi = {},
journal = {Advanced Materials and Processes},
number = 4,
volume = 171,
place = {United States},
year = {Tue Jan 01 00:00:00 EST 2013},
month = {Tue Jan 01 00:00:00 EST 2013}
}
  • In discussing the basic principles of ultrasonics and their application to nondestructive testing of pipeline welds and corrosion measurement, France's Omnium Technique des Transports par Pipelines describes the apparatus, various testing techniques, defect standardization, and the automatic processes available for each application. Compared with radiographic methods, ultrasonics offers light and easy-to-handle apparatus, inspection of any part despite its shape and thickness, and three-dimensional analysis of the defect.
  • A hitherto unobserved phenomenon -- motion induced remote field eddy current effect, is presented in this paper. A numerical study of the non-destructive inspection of tubing with conducting walls, using a DC electromagnetic probe led to the detection of this interesting effect. This paper describes a bidirectional transmission of the electromagnetic field energy through the tube walls, similar to the phenomenon responsible for the Remote Field Eddy Current (RFEC) effect in eddy current (an AC electromagnetic nondestructive testing tool) inspection of tubing. Thus far it was considered that the RFEC effect by the nature of its physics was possible onlymore » in the presence of AC excitation in tubular geometries. However, it is shown in this paper that currents induced by magnetic flux moving over conducting material produce a RFEC effect even when a DC probe is used. This phenomenon may .enable extraction of valuable information regarding the entire thickness of the tube wall from measurements made on the same side as the excitation source.« less
  • Non-destructive testing methods reviewed include: radiography by x rays and gamma rays, ultrasonic inspection, the magnetic particle test, and eddy and induced current tests. (C.J.G.)
  • This research describes the development and implementation of high-fidelity neutron imaging and the associated analysis of the images. This advanced capability allows the non-destructive, non-invasive imaging of particulate filters (PFs) and how the deposition of particulate and catalytic washcoat occurs within the filter. The majority of the efforts described here were performed at the High Flux Isotope Reactor (HFIR) CG-1D neutron imaging beamline at Oak Ridge National Laboratory; the current spatial resolution is approximately 50 μm. The sample holder is equipped with a high-precision rotation stage that allows 3D imaging (i.e., computed tomography) of the sample when combined with computerizedmore » reconstruction tools. What enables the neutron-based image is the ability of some elements to absorb or scatter neutrons where other elements allow the neutron to pass through them with negligible interaction. Of particular interest in this study is the scattering of neutrons by hydrogen-containing molecules, such as hydrocarbons (HCs) and/or water, which are adsorbed to the surface of soot, ash and catalytic washcoat. Even so, the interactions with this adsorbed water/HC is low and computational techniques were required to enhance the contrast, primarily a modified simultaneous iterative reconstruction technique (SIRT). Lastly, this effort describes the following systems: particulate randomly distributed in a PF, ash deposition in PFs, a catalyzed washcoat layer in a PF, and three particulate loadings in a SiC PF.« less