skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Radiative forcing in the ACCMIP historical and future climate simulations

Abstract

The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) examined the short-lived drivers of climate change in current climate models. Here we evaluate the 10 ACCMIP models that included aerosols, 8 of which also participated in the Coupled Model Intercomparison Project phase 5 (CMIP5). The models reproduce present-day total aerosol optical depth (AOD) relatively well, though many are biased low. Contributions from individual aerosol components are quite different, however, and most models underestimate east Asian AOD. The models capture most 1980-2000 AOD trends well, but underpredict increases over the Yellow/Eastern Sea. They strongly underestimate absorbing AOD in many regions. We examine both the direct radiative forcing (RF) and the forcing including rapid adjustments (effective radiative forcing; ERF, including direct and indirect effects). The models’ all-sky 1850 to 2000 global mean annual average total aerosol RF is (mean; range) -0.26Wm-2-2. Screening based on model skill in capturing observed AOD yields a best estimate of -0.42Wm-2-2-2-2-2

Authors:
; ; ; ; ; ; ORCiD logo; ; ; ; ; ; ; ORCiD logo; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ORCiD logo; « less
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1072890
Report Number(s):
PNNL-SA-94346
Journal ID: ISSN 1680-7324; KP1703010
DOE Contract Number:  
AC05-76RL01830
Resource Type:
Journal Article
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Volume: 13; Journal Issue: 6; Journal ID: ISSN 1680-7324
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; radiative; ACCMIP; climate; simulations

Citation Formats

Shindell, D. T., Lamarque, J. -F., Schulz, M., Flanner, M., Jiao, C., Chin, M., Young, P. J., Lee, Y. H., Rotstayn, L., Mahowald, N., Milly, G., Faluvegi, G., Balkanski, Y., Collins, W. J., Conley, A. J., Dalsoren, S., Easter, R., Ghan, S., Horowitz, L., Liu, X., Myhre, G., Nagashima, T., Naik, V., Rumbold, S. T., Skeie, R., Sudo, K., Szopa, S., Takemura, T., Voulgarakis, A., Yoon, J. -H., and Lo, F. Radiative forcing in the ACCMIP historical and future climate simulations. United States: N. p., 2013. Web. doi:10.5194/acp-13-2939-2013.
Shindell, D. T., Lamarque, J. -F., Schulz, M., Flanner, M., Jiao, C., Chin, M., Young, P. J., Lee, Y. H., Rotstayn, L., Mahowald, N., Milly, G., Faluvegi, G., Balkanski, Y., Collins, W. J., Conley, A. J., Dalsoren, S., Easter, R., Ghan, S., Horowitz, L., Liu, X., Myhre, G., Nagashima, T., Naik, V., Rumbold, S. T., Skeie, R., Sudo, K., Szopa, S., Takemura, T., Voulgarakis, A., Yoon, J. -H., & Lo, F. Radiative forcing in the ACCMIP historical and future climate simulations. United States. https://doi.org/10.5194/acp-13-2939-2013
Shindell, D. T., Lamarque, J. -F., Schulz, M., Flanner, M., Jiao, C., Chin, M., Young, P. J., Lee, Y. H., Rotstayn, L., Mahowald, N., Milly, G., Faluvegi, G., Balkanski, Y., Collins, W. J., Conley, A. J., Dalsoren, S., Easter, R., Ghan, S., Horowitz, L., Liu, X., Myhre, G., Nagashima, T., Naik, V., Rumbold, S. T., Skeie, R., Sudo, K., Szopa, S., Takemura, T., Voulgarakis, A., Yoon, J. -H., and Lo, F. 2013. "Radiative forcing in the ACCMIP historical and future climate simulations". United States. https://doi.org/10.5194/acp-13-2939-2013.
@article{osti_1072890,
title = {Radiative forcing in the ACCMIP historical and future climate simulations},
author = {Shindell, D. T. and Lamarque, J. -F. and Schulz, M. and Flanner, M. and Jiao, C. and Chin, M. and Young, P. J. and Lee, Y. H. and Rotstayn, L. and Mahowald, N. and Milly, G. and Faluvegi, G. and Balkanski, Y. and Collins, W. J. and Conley, A. J. and Dalsoren, S. and Easter, R. and Ghan, S. and Horowitz, L. and Liu, X. and Myhre, G. and Nagashima, T. and Naik, V. and Rumbold, S. T. and Skeie, R. and Sudo, K. and Szopa, S. and Takemura, T. and Voulgarakis, A. and Yoon, J. -H. and Lo, F.},
abstractNote = {The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) examined the short-lived drivers of climate change in current climate models. Here we evaluate the 10 ACCMIP models that included aerosols, 8 of which also participated in the Coupled Model Intercomparison Project phase 5 (CMIP5). The models reproduce present-day total aerosol optical depth (AOD) relatively well, though many are biased low. Contributions from individual aerosol components are quite different, however, and most models underestimate east Asian AOD. The models capture most 1980-2000 AOD trends well, but underpredict increases over the Yellow/Eastern Sea. They strongly underestimate absorbing AOD in many regions. We examine both the direct radiative forcing (RF) and the forcing including rapid adjustments (effective radiative forcing; ERF, including direct and indirect effects). The models’ all-sky 1850 to 2000 global mean annual average total aerosol RF is (mean; range) -0.26Wm-2-2. Screening based on model skill in capturing observed AOD yields a best estimate of -0.42Wm-2-2-2-2-2},
doi = {10.5194/acp-13-2939-2013},
url = {https://www.osti.gov/biblio/1072890}, journal = {Atmospheric Chemistry and Physics (Online)},
issn = {1680-7324},
number = 6,
volume = 13,
place = {United States},
year = {2013},
month = {1}
}