skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Case Study of Truncated Electrostatics for Simulation of Polyelectrolyte Brushes on GPU Accelerators

Journal Article · · Journal of Chemical Theory and Computation
DOI:https://doi.org/10.1021/ct300718x· OSTI ID:1069317

Numerous issues have disrupted the trend for increasing computational performance with faster CPU clock frequencies. In order to exploit the potential performance of new computers, it is becoming increasingly desirable to re-evaluate computational physics methods and models with an eye towards towards approaches that allow for increased concurrency and data locality. The evaluation of long-range Coulombic interactions is a common bottleneck for molecular dynamics simulations. Enhanced truncation approaches have been proposed as an alternative method and are particularly well suited for many-core architectures and GPUs due to the inherent fine-grain parallelism that can be exploited. In this paper, we compare efficient truncation-based approximations to evaluation of electrostatic forces with the more traditional particle-particle particle-mesh (P3M) method for molecular dynamics simulation of polyelectrolyte brush layers. We show that with the use of GPU accelerators, large parallel simulations using P3M can be greater than 3 times faster due to a reduction in the mesh-size required. Alternatively, using a truncation-based scheme can improve performance even further. This approach can be up to 3.9 times faster than GPU-accelerated P3M for many polymer systems and results in accurate calculation of shear velocities and disjoining pressures for brush layers. For configurations with highly non-uniform charge distributions, however, we find that it is more efficient to use P3M; for these systems, computationally efficient parameterizations of the truncation-based approach do not produce accurate counterion density profiles or brush morphologies.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). National Center for Computational Sciences (NCCS)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1069317
Journal Information:
Journal of Chemical Theory and Computation, Vol. 9, Issue 1; ISSN 1549--9618
Country of Publication:
United States
Language:
English

Related Subjects