skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Developments with Sandia?s Supercritical Carbon Dioxide Brayton Cycle and Advance Energy Technologies.

Publication Date:
Research Org.:
Sandia National Laboratories
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Proposed for presentation at the 2012 Power Sources Conference held June 11-14, 2012 in las vegas, NV.
Country of Publication:
United States

Citation Formats

Lewis, Tom Goslee, and Rochau, Gary E. Developments with Sandia?s Supercritical Carbon Dioxide Brayton Cycle and Advance Energy Technologies.. United States: N. p., 2012. Web.
Lewis, Tom Goslee, & Rochau, Gary E. Developments with Sandia?s Supercritical Carbon Dioxide Brayton Cycle and Advance Energy Technologies.. United States.
Lewis, Tom Goslee, and Rochau, Gary E. 2012. "Developments with Sandia?s Supercritical Carbon Dioxide Brayton Cycle and Advance Energy Technologies.". United States. doi:.
title = {Developments with Sandia?s Supercritical Carbon Dioxide Brayton Cycle and Advance Energy Technologies.},
author = {Lewis, Tom Goslee and Rochau, Gary E},
abstractNote = {},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2012,
month = 4

Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Significant progress has been made in the ongoing development of the Argonne National Laboratory (ANL) Plant Dynamics Code (PDC), the ongoing investigation and development of control strategies, and the analysis of system transient behavior for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycles. Several code modifications have been introduced during FY2011 to extend the range of applicability of the PDC and to improve its calculational stability and speed. A new and innovative approach was developed to couple the Plant Dynamics Code for S-CO{sub 2} cycle calculations with SAS4A/SASSYS-1 Liquid Metal Reactor Code System calculations for the transient system level behavior onmore » the reactor side of a Sodium-Cooled Fast Reactor (SFR) or Lead-Cooled Fast Reactor (LFR). The new code system allows use of the full capabilities of both codes such that whole-plant transients can now be simulated without additional user interaction. Several other code modifications, including the introduction of compressor surge control, a new approach for determining the solution time step for efficient computational speed, an updated treatment of S-CO{sub 2} cycle flow mergers and splits, a modified enthalpy equation to improve the treatment of negative flow, and a revised solution of the reactor heat exchanger (RHX) equations coupling the S-CO{sub 2} cycle to the reactor, were introduced to the PDC in FY2011. All of these modifications have improved the code computational stability and computational speed, while not significantly affecting the results of transient calculations. The improved PDC was used to continue the investigation of S-CO{sub 2} cycle control and transient behavior. The coupled PDC-SAS4A/SASSYS-1 code capability was used to study the dynamic characteristics of a S-CO{sub 2} cycle coupled to a SFR plant. Cycle control was investigated in terms of the ability of the cycle to respond to a linear reduction in the electrical grid demand from 100% to 0% at a rate of 5%/minute. It was determined that utilization of turbine throttling control below 50% load improves the cycle efficiency significantly. Consequently, the cycle control strategy has been updated to include turbine throttle valve control. The new control strategy still relies on inventory control in the 50%-90% load range and turbine bypass for fine and fast generator output adjustments, but it now also includes turbine throttling control in the 0%-50% load range. In an attempt to investigate the feasibility of using the S-CO{sub 2} cycle for normal decay heat removal from the reactor, the cycle control study was extended beyond the investigation of normal load following. It was shown that such operation is possible with the extension of the inventory and the turbine throttling controls. However, the cycle operation in this range is calculated to be so inefficient that energy would need to be supplied from the electrical grid assuming that the generator could be capable of being operated in a motoring mode with an input electrical energy from the grid having a magnitude of about 20% of the nominal plant output electrical power level in order to maintain circulation of the CO{sub 2} in the cycle. The work on investigation of cycle operation at low power level will be continued in the future. In addition to the cycle control study, the coupled PDC-SAS4A/SASSYS-1 code system was also used to simulate thermal transients in the sodium-to-CO{sub 2} heat exchanger. Several possible conditions with the potential to introduce significant changes to the heat exchanger temperatures were identified and simulated. The conditions range from reactor scram and primary sodium pump failure or intermediate sodium pump failure on the reactor side to pipe breaks and valve malfunctions on the S-CO{sub 2} side. It was found that the maximum possible rate of the heat exchanger wall temperature change for the particular heat exchanger design assumed is limited to {+-}7 C/s for less than 10 seconds. Modeling in the Plant Dynamics Code has been compared with available data from the Sandia National Laboratories (SNL) small-scale S-CO{sub 2} Brayton cycle demonstration that is being assembled in a phased approach currently at Barber-Nichols Inc. and at SNL in the future. The available data was obtained with an earlier configuration of the S-CO{sub 2} loop involving only a single-turbo-alternator-compressor (TAC) instead of two TACs, a single low temperature recuperator (LTR) instead of both a LTR and a high temperature recuperator (HTR), and fewer than the later to be installed full set of electric heaters. Due to the absence of the full heating capability as well as the lack of a high temperature recuperator providing additional recuperation, the temperature conditions obtained with the loop are too low for the loop conditions to be prototypical of the S-CO{sub 2} cycle.« less
  • No abstract prepared.
  • No abstract prepared.
  • An optimized supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle power converter has been developed for the 100 MWe (250 MWt) Advanced Burner Test Reactor (ABTR) eliminating the potential for sodium-water reactions and achieving a small power converter and turbine generator building. Cycle and plant efficiencies of 39.1 and 38.3 %, respectively, are calculated for the ABTR core outlet temperature of 510 deg. C. The ABTR S-CO{sub 2} Brayton cycle will incorporate Printed Circuit Heat Exchanger{sup TM} units in the Na-to-CO{sub 2} heat exchangers, high and low temperature recuperators, and cooler. A new sodium test facility is being completed to investigatemore » the potential for transient plugging of narrow sodium channels typical of a Na-to-CO{sub 2} heat exchanger under postulated off-normal or accident conditions. (authors)« less
  • The Supercritical Carbon Dioxide (S-CO{sub 2}) Brayton Cycle is a promising advanced alternative to the Rankine saturated steam cycle and recuperated gas Brayton cycle for the energy converters of specific reactor concepts belonging to the U.S. Department of Energy Generation IV Nuclear Energy Systems Initiative. A new plant dynamics analysis computer code has been developed for simulation of the S-CO{sub 2} Brayton cycle coupled to an autonomous, natural circulation Lead-Cooled Fast Reactor (LFR). The plant dynamics code was used to simulate the whole-plant response to accident conditions. The specific design features of the reactor concept influencing passive safety are discussedmore » and accident scenarios are identified for analysis. Results of calculations of the whole-plant response to loss-of-heat sink, loss-of-load, and pipe break accidents are demonstrated. The passive safety performance of the reactor concept is confirmed by the results of the plant dynamics code calculations for the selected accident scenarios. (authors)« less