skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: DETERMINATION OF THE DISTRIBUTION AND INVENTORY OF RADIONUCLIDES WITHIN A SAVANNAH RIVER SITE WATERWAY

Abstract

An investigation was conducted to evaluate the radionuclide inventory within the Lower Three Runs (LTR) Integrator Operable Unit (IOU) at the U.S. Department of Energy’s (DOE’s) Savannah River Site (SRS). The scope of this effort included the analysis of previously existing sampling and analysis data as well as additional streambed and floodplain sampling and analysis data acquired to delineate horizontal and vertical distributions of the radionuclide as part of the ongoing SRS environmental restoration program, and specifically for the LTR IOU program. While cesium-137 (Cs-137) is the most significant and abundant radionuclide associated with the LTR IOU it is not the only radionuclide, hence the scope included evaluating all radionuclides present and includes an evaluation of inventory uncertainty for use in sensitivity and uncertainty analyses. The scope involved evaluation of the radionuclide inventory in the P-Reactor and RReactor cooling water effluent canal systems, PAR Pond (including Pond C) and the floodplain and stream sediment sections of LTR between the PAR Pond Dam and the Savannah River. The approach taken was to examine all of the available Sediment and Sediment/Soil analysis data available along the P- and R-Reactor cooling water re-circulation canal system, the ponds situated along those canal reaches andmore » along the length of LTR below Par Pond dam. By breaking the IOU into a series of sub-components and sub-sections, the mass of contaminated material was estimated and a representative central concentration of each radionuclide was computed for each compartment. The radionuclide inventory associated with each sub-compartment was then aggregated to determine the total radionuclide inventory that represented the full LTR IOU. Of special interest was the inventory of Cs-137 due to its role in contributing to the potential dose to an offsite member of the public. The overall LTR IOU inventory of Cs-137 was determined to be 75.5 Ci, which is similar to two earlier estimates. This investigation provides an independent, ground-up estimate of Cs-137 inventory in LTR IOU utilizing the most recent field data.« less

Authors:
;
Publication Date:
Research Org.:
SRS
Sponsoring Org.:
USDOE
OSTI Identifier:
1067366
Report Number(s):
SRNL-STI-2012-00720
DOE Contract Number:  
DE-AC09-08SR22470
Resource Type:
Conference
Resource Relation:
Conference: WM2013
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Hiergesell, R., and Phifer, M. DETERMINATION OF THE DISTRIBUTION AND INVENTORY OF RADIONUCLIDES WITHIN A SAVANNAH RIVER SITE WATERWAY. United States: N. p., 2012. Web.
Hiergesell, R., & Phifer, M. DETERMINATION OF THE DISTRIBUTION AND INVENTORY OF RADIONUCLIDES WITHIN A SAVANNAH RIVER SITE WATERWAY. United States.
Hiergesell, R., and Phifer, M. Fri . "DETERMINATION OF THE DISTRIBUTION AND INVENTORY OF RADIONUCLIDES WITHIN A SAVANNAH RIVER SITE WATERWAY". United States. https://www.osti.gov/servlets/purl/1067366.
@article{osti_1067366,
title = {DETERMINATION OF THE DISTRIBUTION AND INVENTORY OF RADIONUCLIDES WITHIN A SAVANNAH RIVER SITE WATERWAY},
author = {Hiergesell, R. and Phifer, M.},
abstractNote = {An investigation was conducted to evaluate the radionuclide inventory within the Lower Three Runs (LTR) Integrator Operable Unit (IOU) at the U.S. Department of Energy’s (DOE’s) Savannah River Site (SRS). The scope of this effort included the analysis of previously existing sampling and analysis data as well as additional streambed and floodplain sampling and analysis data acquired to delineate horizontal and vertical distributions of the radionuclide as part of the ongoing SRS environmental restoration program, and specifically for the LTR IOU program. While cesium-137 (Cs-137) is the most significant and abundant radionuclide associated with the LTR IOU it is not the only radionuclide, hence the scope included evaluating all radionuclides present and includes an evaluation of inventory uncertainty for use in sensitivity and uncertainty analyses. The scope involved evaluation of the radionuclide inventory in the P-Reactor and RReactor cooling water effluent canal systems, PAR Pond (including Pond C) and the floodplain and stream sediment sections of LTR between the PAR Pond Dam and the Savannah River. The approach taken was to examine all of the available Sediment and Sediment/Soil analysis data available along the P- and R-Reactor cooling water re-circulation canal system, the ponds situated along those canal reaches and along the length of LTR below Par Pond dam. By breaking the IOU into a series of sub-components and sub-sections, the mass of contaminated material was estimated and a representative central concentration of each radionuclide was computed for each compartment. The radionuclide inventory associated with each sub-compartment was then aggregated to determine the total radionuclide inventory that represented the full LTR IOU. Of special interest was the inventory of Cs-137 due to its role in contributing to the potential dose to an offsite member of the public. The overall LTR IOU inventory of Cs-137 was determined to be 75.5 Ci, which is similar to two earlier estimates. This investigation provides an independent, ground-up estimate of Cs-137 inventory in LTR IOU utilizing the most recent field data.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2012},
month = {11}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: