skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Classical Density Functional Theory for Interfacial Layering of Ionic Liquids

Journal Article · · Soft Matter
DOI:https://doi.org/10.1039/c1sm06089a· OSTI ID:1065760
 [1];  [2];  [3];  [1];  [4]
  1. Univ. Of California, Riverside, CA (United States)
  2. Univ. Of California, Riverside, CA (United States); California Energy Commission, Sacramento, CA (United States)
  3. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
  4. Brigham Young Univ., Provo, UT (United States)

Ionic liquids have attracted much recent theoretical interest for broad applications as environmentally-friendly solvents in separation and electrochemical processes. Because of the intrinsic complexity of organic ions and strong electrostatic correlations, the electrochemical properties of ionic liquids often defy the descriptions of conventional mean-field methods including the venerable, and over-used, Gouy–Chapman–Stern (GCS) theory. Classical density functional theory (DFT) has proven to be useful in previous studies of the electrostatic properties of aqueous electrolytes but until recently it has not been applied to ionic liquids. Here we report predictions from the DFT on the interfacial properties of ionic liquids near neutral or charged surfaces. By considering the molecular size, topology, and electrostatic correlations, we have examined major factors responsible for the unique features of electric-double layers of ionic-liquid including formation of long-range and alternating structures of cations and anions at charged surfaces.

Research Organization:
Energy Frontier Research Centers (EFRC) (United States). Fluid Interface Reactions, Structures and Transport Center (FIRST)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
DOE Contract Number:
ERKCC61
OSTI ID:
1065760
Journal Information:
Soft Matter, Vol. 7, Issue 23; Related Information: FIRST partners with Oak Ridge National Laboratory (lead); Argonne National Laboratory; Drexel University; Georgia State University; Northwestern University; Pennsylvania State University; Suffolk University; Vanderbilt University; University of Virginia; ISSN 1744-683X
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English