skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Aerosol–climate interactions in the Norwegian Earth System Model – NorESM1-M

Abstract

The objective of this study is to document and evaluate recent changes and updates to the module for aerosols and aerosol–cloud–radiation interactions in the atmospheric module CAM4-Oslo of the core version of the Norwegian Earth System Model (NorESM), NorESM1-M. Particular attention is paid to the role of natural organics, sea salt, and mineral dust in determining the gross aerosol properties as well as the anthropogenic contribution to these properties and the associated direct and indirect radiative forcing. The aerosol module is extended from earlier versions that have been published, and includes life-cycling of sea salt, mineral dust, particulate sulphate, black carbon, and primary and secondary organics. The impacts of most of the numerous changes since previous versions are thoroughly explored by sensitivity experiments. The most important changes are: modified prognostic sea salt emissions; updated treatment of precipitation scavenging and gravitational settling; inclusion of biogenic primary organics and methane sulphonic acid (MSA) from oceans; almost doubled production of land-based biogenic secondary organic aerosols (SOA); and increased ratio of organic matter to organic carbon (OM/OC) for biomass burning aerosols from 1.4 to 2.6. Compared with in situ measurements and remotely sensed data, the new treatments of sea salt and dust aerosols givemore » smaller biases in near-surface mass concentrations and aerosol optical depth than in the earlier model version. The model biases for mass concentrations are approximately unchanged for sulphate and BC. The enhanced levels of modeled OM yield improved overall statistics, even though OM is still underestimated in Europe and overestimated in North America. The global anthropogenic aerosol direct radiative forcing (DRF) at the top of the atmosphere has changed from a small positive value to -0.08 W m-2 in CAM4-Oslo. The sensitivity tests suggest that this change can be attributed to the new treatment of biomass burning aerosols and gravitational settling. Although it has not been a goal in this study, the new DRF estimate is closer both to the median model estimate from the AeroCom intercomparison and the best estimate in IPCC AR4. Estimated DRF at the ground surface has increased by ca. 60%, to -1.89 W m-2. We show that this can be explained by new emission data and omitted mixing of constituents between updrafts and downdrafts in convective clouds. The increased abundance of natural OM and the introduction of a cloud droplet spectral dispersion formulation are the most important contributions to a considerably decreased estimate of the indirect radiative forcing (IndRF). The IndRF is also found to be sensitive to assumptions about the coating of insoluble aerosols by sulphate and OM. The IndRF of -1.2 W m-2, which is closer to the IPCC AR4 estimates than the previous estimate of -1.9 W m-2, has thus been obtained without imposing unrealistic artificial lower bounds on cloud droplet number concentrations.« less

Authors:
; ; ; ORCiD logo; ; ; ORCiD logo; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1063707
Report Number(s):
PNNL-SA-89156
Journal ID: ISSN 1991-9603; KP1703020
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Geoscientific Model Development (Online); Journal Volume: 6; Journal Issue: 1
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; aerosol-climate; interactions; Norwegian; Earth 1; NorESM

Citation Formats

Kirkevåg, A., Iversen, T., Seland, Ø., Hoose, C., Kristjánsson, J. E., Struthers, H., Ekman, A. M. L., Ghan, S., Griesfeller, J., Nilsson, E. D., and Schulz, M. Aerosol–climate interactions in the Norwegian Earth System Model – NorESM1-M. United States: N. p., 2013. Web. doi:10.5194/gmd-6-207-2013.
Kirkevåg, A., Iversen, T., Seland, Ø., Hoose, C., Kristjánsson, J. E., Struthers, H., Ekman, A. M. L., Ghan, S., Griesfeller, J., Nilsson, E. D., & Schulz, M. Aerosol–climate interactions in the Norwegian Earth System Model – NorESM1-M. United States. doi:10.5194/gmd-6-207-2013.
Kirkevåg, A., Iversen, T., Seland, Ø., Hoose, C., Kristjánsson, J. E., Struthers, H., Ekman, A. M. L., Ghan, S., Griesfeller, J., Nilsson, E. D., and Schulz, M. 2013. "Aerosol–climate interactions in the Norwegian Earth System Model – NorESM1-M". United States. doi:10.5194/gmd-6-207-2013.
@article{osti_1063707,
title = {Aerosol–climate interactions in the Norwegian Earth System Model – NorESM1-M},
author = {Kirkevåg, A. and Iversen, T. and Seland, Ø. and Hoose, C. and Kristjánsson, J. E. and Struthers, H. and Ekman, A. M. L. and Ghan, S. and Griesfeller, J. and Nilsson, E. D. and Schulz, M.},
abstractNote = {The objective of this study is to document and evaluate recent changes and updates to the module for aerosols and aerosol–cloud–radiation interactions in the atmospheric module CAM4-Oslo of the core version of the Norwegian Earth System Model (NorESM), NorESM1-M. Particular attention is paid to the role of natural organics, sea salt, and mineral dust in determining the gross aerosol properties as well as the anthropogenic contribution to these properties and the associated direct and indirect radiative forcing. The aerosol module is extended from earlier versions that have been published, and includes life-cycling of sea salt, mineral dust, particulate sulphate, black carbon, and primary and secondary organics. The impacts of most of the numerous changes since previous versions are thoroughly explored by sensitivity experiments. The most important changes are: modified prognostic sea salt emissions; updated treatment of precipitation scavenging and gravitational settling; inclusion of biogenic primary organics and methane sulphonic acid (MSA) from oceans; almost doubled production of land-based biogenic secondary organic aerosols (SOA); and increased ratio of organic matter to organic carbon (OM/OC) for biomass burning aerosols from 1.4 to 2.6. Compared with in situ measurements and remotely sensed data, the new treatments of sea salt and dust aerosols give smaller biases in near-surface mass concentrations and aerosol optical depth than in the earlier model version. The model biases for mass concentrations are approximately unchanged for sulphate and BC. The enhanced levels of modeled OM yield improved overall statistics, even though OM is still underestimated in Europe and overestimated in North America. The global anthropogenic aerosol direct radiative forcing (DRF) at the top of the atmosphere has changed from a small positive value to -0.08 W m-2 in CAM4-Oslo. The sensitivity tests suggest that this change can be attributed to the new treatment of biomass burning aerosols and gravitational settling. Although it has not been a goal in this study, the new DRF estimate is closer both to the median model estimate from the AeroCom intercomparison and the best estimate in IPCC AR4. Estimated DRF at the ground surface has increased by ca. 60%, to -1.89 W m-2. We show that this can be explained by new emission data and omitted mixing of constituents between updrafts and downdrafts in convective clouds. The increased abundance of natural OM and the introduction of a cloud droplet spectral dispersion formulation are the most important contributions to a considerably decreased estimate of the indirect radiative forcing (IndRF). The IndRF is also found to be sensitive to assumptions about the coating of insoluble aerosols by sulphate and OM. The IndRF of -1.2 W m-2, which is closer to the IPCC AR4 estimates than the previous estimate of -1.9 W m-2, has thus been obtained without imposing unrealistic artificial lower bounds on cloud droplet number concentrations.},
doi = {10.5194/gmd-6-207-2013},
journal = {Geoscientific Model Development (Online)},
number = 1,
volume = 6,
place = {United States},
year = 2013,
month = 1
}
  • Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries) and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally averaged carbon cycle; we argue that this is likely to be because the CCSM3.1 model has a small climatemore » feedback onto the carbon cycle. We propose a mechanism for including desert dust and anthropogenic aerosols into a simple carbon-climate feedback analysis to explain the results of our and previous studies. Inclusion of aerosols has statistically significant impacts on regional climate and biogeochemistry, in particular through the effects on the ocean nitrogen cycle and primary productivity of altered iron inputs from desert dust deposition.« less
  • Idealised and hindcast simulations performed with the stand-alone ocean carbon-cycle configuration of the Norwegian Earth System Model (NorESM-OC) are described and evaluated. We present simulation results of three different model configurations (two different model versions at different grid resolutions) using two different atmospheric forcing data sets. Model version NorESM-OC1 corresponds to the version that is included in the NorESM-ME1 fully coupled model, which participated in CMIP5. The main update between NorESM-OC1 and NorESM-OC1.2 is the addition of two new options for the treatment of sinking particles. We find that using a constant sinking speed, which has been the standard in NorESM'smore » ocean carbon cycle module HAMOCC (HAMburg Ocean Carbon Cycle model), does not transport enough particulate organic carbon (POC) into the deep ocean below approximately 2000 m depth. The two newly implemented parameterisations, a particle aggregation scheme with prognostic sinking speed, and a simpler scheme that uses a linear increase in the sinking speed with depth, provide better agreement with observed POC fluxes. Additionally, reduced deep ocean biases of oxygen and remineralised phosphate indicate a better performance of the new parameterisations. For model version 1.2, a re-tuning of the ecosystem parameterisation has been performed, which (i) reduces previously too high primary production at high latitudes, (ii) consequently improves model results for surface nutrients, and (iii) reduces alkalinity and dissolved inorganic carbon biases at low latitudes. We use hindcast simulations with prescribed observed and constant (pre-industrial) atmospheric CO 2 concentrations to derive the past and contemporary ocean carbon sink. As a result, for the period 1990–1999 we find an average ocean carbon uptake ranging from 2.01 to 2.58 Pg C yr -1 depending on model version, grid resolution, and atmospheric forcing data set.« less
  • Many global aerosol and climate models, including the widely used Community Atmosphere Model version 5 (CAM5), have large biases in predicting aerosols in remote regions such as upper troposphere and high latitudes. In this study, we conduct CAM5 sensitivity simulations to understand the role of key processes associated with aerosol transformation and wet removal affecting the vertical and horizontal long-range transport of aerosols to the remote regions. Improvements are made to processes that are currently not well represented in CAM5, which are guided by surface and aircraft measurements together with results from a multi-scale aerosol-climate model (PNNL-MMF) that explicitly representsmore » convection and aerosol-cloud interactions at cloud-resolving scales. We pay particular attention to black carbon (BC) due to its importance in the Earth system and the availability of measurements. We introduce into CAM5 a new unified scheme for convective transport and aerosol wet removal with explicit aerosol activation above convective cloud base. This new implementation reduces the excessive BC aloft to better simulate observed BC profiles that show decreasing mixing ratios in the mid- to upper-troposphere. After implementing this new unified convective scheme, we examine wet removal of submicron aerosols that occurs primarily through cloud processes. The wet removal depends strongly on the sub-grid scale liquid cloud fraction and the rate of conversion of liquid water to precipitation. These processes lead to very strong wet removal of BC and other aerosols over mid- to high latitudes during winter months. With our improvements, the Arctic BC burden has a10-fold (5-fold) increase in the winter (summer) months, resulting in a much better simulation of the BC seasonal cycle as well. Arctic sulphate and other aerosol species also increase but to a lesser extent. An explicit treatment of BC aging with slower aging assumptions produces an additional 30-fold (5-fold) increase in the Arctic winter (summer) BC burden. This BC aging treatment, however, has minimal effect on other under-predicted species. Interestingly, our modifications to CAM5 that aim at improving prediction of high-latitude and upper tropospheric aerosols also produce much better AOD and AAOD over various other regions globally when compared to multi-year AERONET retrievals. The improved aerosol distributions have impacts on other aspects of CAM5, improving the simulation of global mean liquid water path and cloud forcing.« less
  • This study advances the practicality and stability of the traditional multivariate statistical method, generalized equilibrium feedback assessment (GEFA), for decomposing the key oceanic drivers of regional atmospheric variability, especially when available data records are short. An advanced stepwise GEFA methodology is introduced, in which unimportant forcings within the forcing matrix are eliminated through stepwise selection. Method validation of stepwise GEFA is performed using the CESM, with a focused application to northern and tropical Africa (NTA). First, a statistical assessment of the atmospheric response to each primary oceanic forcing is carried out by applying stepwise GEFA to a fully coupled controlmore » run. Then, a dynamical assessment of the atmospheric response to individual oceanic forcings is performed through ensemble experiments by imposing sea surface temperature anomalies over focal ocean basins. Finally, to quantify the reliability of stepwise GEFA, the statistical assessment is evaluated against the dynamical assessment in terms of four metrics: the percentage of grid cells with consistent response sign, the spatial correlation of atmospheric response patterns, the area-averaged seasonal cycle of response magnitude, and consistency in associated mechanisms between assessments. In CESM, tropical modes, namely El Niño–Southern Oscillation and the tropical Indian Ocean Basin, tropical Indian Ocean dipole, and tropical Atlantic Niño modes, are the dominant oceanic controls of NTA climate. In complementary studies, stepwise GEFA is validated in terms of isolating terrestrial forcings on the atmosphere, and observed oceanic and terrestrial drivers of NTA climate are extracted to establish an observational benchmark for subsequent coupled model evaluation and development of process-based weights for regional climate projections.« less
    Cited by 1