skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Solution NMR of a 463-Residue Phosphohexomutase: Domain 4 Mobility, Substates, and Phosphoryl Transfer Defect

Journal Article · · Biochemistry
DOI:https://doi.org/10.1021/bi201609n· OSTI ID:1053365

Phosphomannomutase/phosphoglucomutase contributes to the infectivity of Pseudomonas aeruginosa, retains and reorients its intermediate by 180°, and rotates domain 4 to close the deep catalytic cleft. Nuclear magnetic resonance (NMR) spectra of the backbone of wild-type and S108C-inactivated enzymes were assigned to at least 90%. 13C secondary chemical shifts report excellent agreement of solution and crystallographic structure over the 14 α-helices, C-capping motifs, and 20 of the 22 β-strands. Major and minor NMR peaks implicate substates affecting 28% of assigned residues. These can be attributed to the phosphorylation state and possibly to conformational interconversions. The S108C substitution of the phosphoryl donor and acceptor slowed transformation of the glucose 1-phosphate substrate by impairing kcat. Addition of the glucose 1,6-bisphosphate intermediate accelerated this reaction by 2–3 orders of magnitude, somewhat bypassing the defect and apparently relieving substrate inhibition. The S108C mutation perturbs the NMR spectra and electron density map around the catalytic cleft while preserving the secondary structure in solution. Diminished peak heights and faster 15N relaxation suggest line broadening and millisecond fluctuations within four loops that can contact phosphosugars. 15N NMR relaxation and peak heights suggest that domain 4 reorients slightly faster in solution than domains 1–3, and with a different principal axis of diffusion. Finally, this adds to the crystallographic evidence of domain 4 rotations in the enzyme, which were previously suggested to couple to reorientation of the intermediate, substrate binding, and product release.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1053365
Journal Information:
Biochemistry, Vol. 51, Issue 3; ISSN 0006-2960
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English