skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MODELING WIND TURBINES IN THE GRIDLAB-D SOFTWARE ENVIRONMENT

Abstract

In recent years, the rapid expansion of wind power has resulted in a need to more accurately model the effects of wind penetration on the electricity infrastructure. GridLAB-D is a new simulation environment developed for the U.S. Department of Energy (DOE) by the Pacifi c Northwest National Laboratory (PNNL), in cooperation with academic and industrial partners. GridLAB-D was originally written and designed to help integrate end-use smart grid technologies, and it is currently being expanded to include a number of other technologies, including distributed energy resources (DER). The specifi c goal of this project is to create a preliminary wind turbine generator (WTG) model for integration into GridLAB-D. As wind power penetration increases, models are needed to accurately study the effects of increased penetration; this project is a beginning step at examining these effects within the GridLAB-D environment. Aerodynamic, mechanical and electrical power models were designed to simulate the process by which mechanical power is extracted by a wind turbine and converted into electrical energy. The process was modeled using historic atmospheric data, collected over a period of 30 years as the primary energy input. This input was then combined with preliminary models for synchronous and induction generators. Additionally, basicmore » control methods were implemented, using either constant power factor or constant power modes. The model was then compiled into the GridLAB-D simulation environment, and the power outputs were compared against manufacturers’ data and then a variation of the IEEE 4 node test feeder was used to examine the model’s behavior. Results showed the designs were suffi cient for a prototype model and provided output power similar to the available manufacturers’ data. The prototype model is designed as a template for the creation of new modules, with turbine-specifi c parameters to be added by the user.« less

Authors:
;
Publication Date:
Research Org.:
DOESC (USDOE Office of Science (SC) (United States))
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1052120
Resource Type:
Journal Article
Journal Name:
Journal of Undergraduate Research
Additional Journal Information:
Journal Volume: 9
Country of Publication:
United States
Language:
English

Citation Formats

Fuller, J C, and Schneider, K P. MODELING WIND TURBINES IN THE GRIDLAB-D SOFTWARE ENVIRONMENT. United States: N. p., 2009. Web.
Fuller, J C, & Schneider, K P. MODELING WIND TURBINES IN THE GRIDLAB-D SOFTWARE ENVIRONMENT. United States.
Fuller, J C, and Schneider, K P. Thu . "MODELING WIND TURBINES IN THE GRIDLAB-D SOFTWARE ENVIRONMENT". United States. https://www.osti.gov/servlets/purl/1052120.
@article{osti_1052120,
title = {MODELING WIND TURBINES IN THE GRIDLAB-D SOFTWARE ENVIRONMENT},
author = {Fuller, J C and Schneider, K P},
abstractNote = {In recent years, the rapid expansion of wind power has resulted in a need to more accurately model the effects of wind penetration on the electricity infrastructure. GridLAB-D is a new simulation environment developed for the U.S. Department of Energy (DOE) by the Pacifi c Northwest National Laboratory (PNNL), in cooperation with academic and industrial partners. GridLAB-D was originally written and designed to help integrate end-use smart grid technologies, and it is currently being expanded to include a number of other technologies, including distributed energy resources (DER). The specifi c goal of this project is to create a preliminary wind turbine generator (WTG) model for integration into GridLAB-D. As wind power penetration increases, models are needed to accurately study the effects of increased penetration; this project is a beginning step at examining these effects within the GridLAB-D environment. Aerodynamic, mechanical and electrical power models were designed to simulate the process by which mechanical power is extracted by a wind turbine and converted into electrical energy. The process was modeled using historic atmospheric data, collected over a period of 30 years as the primary energy input. This input was then combined with preliminary models for synchronous and induction generators. Additionally, basic control methods were implemented, using either constant power factor or constant power modes. The model was then compiled into the GridLAB-D simulation environment, and the power outputs were compared against manufacturers’ data and then a variation of the IEEE 4 node test feeder was used to examine the model’s behavior. Results showed the designs were suffi cient for a prototype model and provided output power similar to the available manufacturers’ data. The prototype model is designed as a template for the creation of new modules, with turbine-specifi c parameters to be added by the user.},
doi = {},
journal = {Journal of Undergraduate Research},
number = ,
volume = 9,
place = {United States},
year = {2009},
month = {1}
}