skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CLIMATE CHANGE EFFECTS ON SPECIES COMPOSITION MEDIATES DECOMPOSITION IN AN OLD-FIELD ECOSYSTEM

Abstract

Decomposition of leaf litter collected from an old-fi eld community grown under a combination of elevated atmospheric CO2 concentrations (+300ppm) and elevated surface temperature (+ 3.2°C) was examined in ambient conditions over 8 months in two separate experiments. In the fi rst experiment, we examined the main effects and interactions of CO2 and warming on litter quality and subsequent mass loss rates. Multi-species litter bags were constructed with litter collected from chambers with ambient CO2 and ambient temperatures (ACAT), elevated CO2 and elevated temperature (ECET), ambient CO2 and elevated temperature (ACET), and elevated CO2 and ambient temperature (ECAT). Litter collected from 6 species in each chamber was represented in decomposition bags in equal proportions. There were no differences in initial litter percent carbon (C) or nitrogen (N) among treatments. After 8 months, litter collected from ACET chambers lost over 20% more mass than litter collected from ECET or ACAT chambers, although biological differences were small. In the second experiment, we examined the indirect effect climate change may have on plant community composition, litter inputs, and subsequent mass loss rates. Litter bags were made from the same chambers mentioned above, but the amount of litter in the bag from each speciesmore » was proportional to peak standing biomass of that species within the treatment. Initial litter in ECAT bags had up to 4% less C and 29% less N than ECET and ACET bags. Mass loss from ACET bags was 48% higher than mass loss from ECAT bags and 37% higher than mass loss from ACAT bags after 8 months of decomposition. These differences may have been driven by the higher proportion of litter from Lespedeza, a N-fi xer, in the natural ACET bags. Taken together, these data suggest that climate change will have a larger effect on decomposition by causing shifts in plant communities than it will by altering litter quality.« less

Authors:
;
Publication Date:
Research Org.:
DOESC (USDOE Office of Science (SC) (United States))
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1052054
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Undergraduate Research; Journal Volume: 7
Country of Publication:
United States
Language:
English

Citation Formats

Tyner, M.L., and Classen, A.T.. CLIMATE CHANGE EFFECTS ON SPECIES COMPOSITION MEDIATES DECOMPOSITION IN AN OLD-FIELD ECOSYSTEM. United States: N. p., 2007. Web.
Tyner, M.L., & Classen, A.T.. CLIMATE CHANGE EFFECTS ON SPECIES COMPOSITION MEDIATES DECOMPOSITION IN AN OLD-FIELD ECOSYSTEM. United States.
Tyner, M.L., and Classen, A.T.. Mon . "CLIMATE CHANGE EFFECTS ON SPECIES COMPOSITION MEDIATES DECOMPOSITION IN AN OLD-FIELD ECOSYSTEM". United States. doi:. https://www.osti.gov/servlets/purl/1052054.
@article{osti_1052054,
title = {CLIMATE CHANGE EFFECTS ON SPECIES COMPOSITION MEDIATES DECOMPOSITION IN AN OLD-FIELD ECOSYSTEM},
author = {Tyner, M.L. and Classen, A.T.},
abstractNote = {Decomposition of leaf litter collected from an old-fi eld community grown under a combination of elevated atmospheric CO2 concentrations (+300ppm) and elevated surface temperature (+ 3.2°C) was examined in ambient conditions over 8 months in two separate experiments. In the fi rst experiment, we examined the main effects and interactions of CO2 and warming on litter quality and subsequent mass loss rates. Multi-species litter bags were constructed with litter collected from chambers with ambient CO2 and ambient temperatures (ACAT), elevated CO2 and elevated temperature (ECET), ambient CO2 and elevated temperature (ACET), and elevated CO2 and ambient temperature (ECAT). Litter collected from 6 species in each chamber was represented in decomposition bags in equal proportions. There were no differences in initial litter percent carbon (C) or nitrogen (N) among treatments. After 8 months, litter collected from ACET chambers lost over 20% more mass than litter collected from ECET or ACAT chambers, although biological differences were small. In the second experiment, we examined the indirect effect climate change may have on plant community composition, litter inputs, and subsequent mass loss rates. Litter bags were made from the same chambers mentioned above, but the amount of litter in the bag from each species was proportional to peak standing biomass of that species within the treatment. Initial litter in ECAT bags had up to 4% less C and 29% less N than ECET and ACET bags. Mass loss from ACET bags was 48% higher than mass loss from ECAT bags and 37% higher than mass loss from ACAT bags after 8 months of decomposition. These differences may have been driven by the higher proportion of litter from Lespedeza, a N-fi xer, in the natural ACET bags. Taken together, these data suggest that climate change will have a larger effect on decomposition by causing shifts in plant communities than it will by altering litter quality.},
doi = {},
journal = {Journal of Undergraduate Research},
number = ,
volume = 7,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}