skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Laser-Induced Damage of Calcium Fluoride

Abstract

As advances continue to be made in laser technology there is an increasing demand for materials that have high thresholds for laser-induced damage. Laser damage occurs when light is absorbed, creating defects in the crystal lattice. These defects can lead to the emission of atoms, ions and molecules from the sample. One specific field where laser damage is of serious concern is semiconductor lithography, which is beginning to use light at a wavelength of 157 nm. CaF2 is a candidate material for use in this new generation of lithography. In order to prevent unnecessary damage of optical components, it is necessary to understand the mechanisms for laser damage and the factors that serve to enhance it. In this research, we study various aspects of laser interactions with CaF2, including impurity absorbance and various forms of damage caused by incident laser light. Ultraviolet (UV) laser light at 266 nm with both femtosecond (fs) and nanosecond (ns) pulse widths is used to induce ion and neutral particle emission from cleaved samples of CaF2. The resulting mass spectra show significant differences suggesting that different mechanisms for desorption occur following excitation using the different pulse durations. Following irradiation by ns pulses at 266 nm,more » multiple single-photon absorption from defect states is likely responsible for ion emission whereas the fs case is driven by a multi-photon absorption process. This idea is further supported by the measurements made of the transmission and reflection of fs laser pulses at 266 nm, the results of which reveal a non-linear absorption process in effect at high incident intensities. In addition, the kinetic energy profiles of desorbed Ca and K contaminant atoms are different indicating that a different mechanism is responsible for their emission as well. Overall, these results show that purity plays a key role in the desorption of atoms from CaF2 when using ns pulses. On the other hand, once the irradiance reaches high levels, like that of the fs case, significant desorption is possible due to multi-photon absorption by the intrinsic material.« less

Authors:
; ; ;
Publication Date:
Research Org.:
DOESC (USDOE Office of Science (SC) (United States))
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1051664
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Undergraduate Research; Journal Volume: 4
Country of Publication:
United States
Language:
English

Citation Formats

Espana, A., Joly, A.G., Hess, W.P., and Dickinson, J.T.. Laser-Induced Damage of Calcium Fluoride. United States: N. p., 2004. Web.
Espana, A., Joly, A.G., Hess, W.P., & Dickinson, J.T.. Laser-Induced Damage of Calcium Fluoride. United States.
Espana, A., Joly, A.G., Hess, W.P., and Dickinson, J.T.. Thu . "Laser-Induced Damage of Calcium Fluoride". United States. doi:. https://www.osti.gov/servlets/purl/1051664.
@article{osti_1051664,
title = {Laser-Induced Damage of Calcium Fluoride},
author = {Espana, A. and Joly, A.G. and Hess, W.P. and Dickinson, J.T.},
abstractNote = {As advances continue to be made in laser technology there is an increasing demand for materials that have high thresholds for laser-induced damage. Laser damage occurs when light is absorbed, creating defects in the crystal lattice. These defects can lead to the emission of atoms, ions and molecules from the sample. One specific field where laser damage is of serious concern is semiconductor lithography, which is beginning to use light at a wavelength of 157 nm. CaF2 is a candidate material for use in this new generation of lithography. In order to prevent unnecessary damage of optical components, it is necessary to understand the mechanisms for laser damage and the factors that serve to enhance it. In this research, we study various aspects of laser interactions with CaF2, including impurity absorbance and various forms of damage caused by incident laser light. Ultraviolet (UV) laser light at 266 nm with both femtosecond (fs) and nanosecond (ns) pulse widths is used to induce ion and neutral particle emission from cleaved samples of CaF2. The resulting mass spectra show significant differences suggesting that different mechanisms for desorption occur following excitation using the different pulse durations. Following irradiation by ns pulses at 266 nm, multiple single-photon absorption from defect states is likely responsible for ion emission whereas the fs case is driven by a multi-photon absorption process. This idea is further supported by the measurements made of the transmission and reflection of fs laser pulses at 266 nm, the results of which reveal a non-linear absorption process in effect at high incident intensities. In addition, the kinetic energy profiles of desorbed Ca and K contaminant atoms are different indicating that a different mechanism is responsible for their emission as well. Overall, these results show that purity plays a key role in the desorption of atoms from CaF2 when using ns pulses. On the other hand, once the irradiance reaches high levels, like that of the fs case, significant desorption is possible due to multi-photon absorption by the intrinsic material.},
doi = {},
journal = {Journal of Undergraduate Research},
number = ,
volume = 4,
place = {United States},
year = {Thu Jan 01 00:00:00 EST 2004},
month = {Thu Jan 01 00:00:00 EST 2004}
}
  • Radiation damage of materials has long been of fundamental interest, especially since the growth of laser technology. One such source of damage comes from UV laser light. Laser systems continue to move into shorter wavelength ranges, but unfortunately are limited by the damage threshold of their optical components. For example, semiconductor lithography is making its way into the 157nm range and requires a material that can not only transmit this light (air cannot), but also withstand the highly energetic photons present at this shorter wavelength. CaF2, an alkaline earth halide, is the chosen material for vacuum UV 157 nm excimermore » radiation. It can transmit light down to 120 nm and is relatively inexpensive. Although it is readily available through natural and synthetic sources, it is often times difficult to find in high purity. Impurities in the crystal can result in occupied states in the band gap that induce photon absorption [2] and ultimately lead to the degradation of the material. In order to predict how well CaF2 will perform under irradiation of short wavelength laser light, one must understand the mechanisms for laser-induced damage. Laser damage is often a two-step process: initial photons create new defects in the lattice and subsequent photons excite these defects. When laser light is incident on a solid surface there is an initial production of electron-hole (e-h) pairs, a heating of free electrons and a generation of local heating around optically absorbing centers [3]. Once this initial excitation converts to the driving energy for nuclear motion, the result is an ejection of atoms, ions and molecules from the surface, known as desorption or ablation [3]. Secondary processes further driving desorption are photoabsorption, successive excitations of self-trapped excitons (STE's) and defects, and ionization of neutrals by incident laser light [3]. The combination of laser-induced desorption and the alterations to the electronic and geometrical structure of the lattice result in defect formation. In the material CaF2 some of these defects take the form of F-centers, an electron trapped at a halogen vacancy [4], and H-centers, a F2- molecular ion at a single lattice site [5]. While the F-centers are stable, the H-centers are transient but can form into aggregates that are stable. There are many different configurations the defects can take based on the relative position of F and H centers in the lattice and this is extensively discussed in literature [1,4,5]. Once these defects have formed they cause further absorption of light, which ultimately induces particle emission and the production of even more defects. Various forms of laser-induced damage of CaF2 have been studied. For example, the mechanism for photon-stimulated desorption (PSD) of F+ from CaF2 (111) is discussed in ref. 6 and the energy threshold, distribution and kinetics governing electron-stimulated desorption (ESD) is investigated in ref. 7. The desorption of neutral Ca and F atoms has also been explored [1]. In this paper I focus on the emission of ions and neutrals from CaF2 under the irradiation of pulsed laser light at 266 nm, in addition to a brief study of its purity and transmittance.« less