skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Max Tech and Beyond: Maximizing Appliance and Equipment Efficiency by Design

Abstract

It is well established that energy efficiency is most often the lowest cost approach to reducing national energy use and minimizing carbon emissions. National investments in energy efficiency to date have been highly cost-effective. The cumulative impacts (out to 2050) of residential energy efficiency standards are expected to have a benefit-to-cost ratio of 2.71:1. This project examined energy end-uses in the residential, commercial, and in some cases the industrial sectors. The scope is limited to appliances and equipment, and does not include building materials, building envelopes, and system designs. This scope is consistent with the scope of DOE's appliance standards program, although many products considered here are not currently subject to energy efficiency standards. How much energy could the United States save if the most efficient design options currently feasible were adopted universally? What design features could produce those savings? How would the savings from various technologies compare? With an eye toward identifying promising candidates and strategies for potential energy efficiency standards, the Max Tech and Beyond project aims to answer these questions. The analysis attempts to consolidate, in one document, the energy savings potential and design characteristics of best-on-market products, best-engineered products (i.e., hypothetical products produced using best-on-market componentsmore » and technologies), and emerging technologies in research & development. As defined here, emerging technologies are fundamentally new and are as yet unproven in the market, although laboratory studies and/or emerging niche applications offer persuasive evidence of major energy-savings potential. The term 'max tech' is used to describe both best-engineered and emerging technologies (whichever appears to offer larger savings). Few best-on-market products currently qualify as max tech, since few apply all available best practices and components. The three primary analyses presented in this report are: Nevertheless, it is important to analyze best-on-market products, since data on truly max tech technologies are limited. (1) an analysis of the cross-cutting strategies most promising for reducing appliance and equipment energy use in the U.S.; (2) a macro-analysis of the U.S. energy-saving potential inherent in promising ultra-efficient appliance technologies; and (3) a product-level analysis of the energy-saving potential.« less

Authors:
;
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
Environmental Energy Technologies Division
OSTI Identifier:
1047752
Report Number(s):
LBNL-4998E
TRN: US201216%%695
DOE Contract Number:  
DE-AC02-05CH11231
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; 29 ENERGY PLANNING, POLICY AND ECONOMY; APPLIANCES; BUILDING MATERIALS; CARBON; DESIGN; EFFICIENCY; ENERGY EFFICIENCY; ENERGY EFFICIENCY STANDARDS; INDUSTRY; MARKET; POTENTIAL ENERGY; ROOFS; WALLS

Citation Formats

Desroches, Louis-Benoit, and Garbesi, Karina. Max Tech and Beyond: Maximizing Appliance and Equipment Efficiency by Design. United States: N. p., 2011. Web. doi:10.2172/1047752.
Desroches, Louis-Benoit, & Garbesi, Karina. Max Tech and Beyond: Maximizing Appliance and Equipment Efficiency by Design. United States. doi:10.2172/1047752.
Desroches, Louis-Benoit, and Garbesi, Karina. Wed . "Max Tech and Beyond: Maximizing Appliance and Equipment Efficiency by Design". United States. doi:10.2172/1047752. https://www.osti.gov/servlets/purl/1047752.
@article{osti_1047752,
title = {Max Tech and Beyond: Maximizing Appliance and Equipment Efficiency by Design},
author = {Desroches, Louis-Benoit and Garbesi, Karina},
abstractNote = {It is well established that energy efficiency is most often the lowest cost approach to reducing national energy use and minimizing carbon emissions. National investments in energy efficiency to date have been highly cost-effective. The cumulative impacts (out to 2050) of residential energy efficiency standards are expected to have a benefit-to-cost ratio of 2.71:1. This project examined energy end-uses in the residential, commercial, and in some cases the industrial sectors. The scope is limited to appliances and equipment, and does not include building materials, building envelopes, and system designs. This scope is consistent with the scope of DOE's appliance standards program, although many products considered here are not currently subject to energy efficiency standards. How much energy could the United States save if the most efficient design options currently feasible were adopted universally? What design features could produce those savings? How would the savings from various technologies compare? With an eye toward identifying promising candidates and strategies for potential energy efficiency standards, the Max Tech and Beyond project aims to answer these questions. The analysis attempts to consolidate, in one document, the energy savings potential and design characteristics of best-on-market products, best-engineered products (i.e., hypothetical products produced using best-on-market components and technologies), and emerging technologies in research & development. As defined here, emerging technologies are fundamentally new and are as yet unproven in the market, although laboratory studies and/or emerging niche applications offer persuasive evidence of major energy-savings potential. The term 'max tech' is used to describe both best-engineered and emerging technologies (whichever appears to offer larger savings). Few best-on-market products currently qualify as max tech, since few apply all available best practices and components. The three primary analyses presented in this report are: Nevertheless, it is important to analyze best-on-market products, since data on truly max tech technologies are limited. (1) an analysis of the cross-cutting strategies most promising for reducing appliance and equipment energy use in the U.S.; (2) a macro-analysis of the U.S. energy-saving potential inherent in promising ultra-efficient appliance technologies; and (3) a product-level analysis of the energy-saving potential.},
doi = {10.2172/1047752},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2011},
month = {7}
}