skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Band-Structure, Optical Properties, and Defect Physics of the Photovoltaic Semiconductor SnS

Abstract

SnS is a potential earth-abundant photovoltaic (PV) material. Employing both theory and experiment to assess the PV relevant properties of SnS, we clarify on whether SnS has an indirect or direct band gap and what is the minority carrier effective mass as a function of the film orientation. SnS has a 1.07 eV indirect band gap with an effective absorption onset located 0.4 eV higher. The effective mass of minority carrier ranges from 0.5 m{sub 0} perpendicular to the van der Waals layers to 0.2 m{sub 0} into the van der Waals layers. The positive characteristics of SnS feature a desirable p-type carrier concentration due to the easy formation of acceptor-like intrinsic Sn vacancy defects. Potentially detrimental deep levels due to SnS antisite or S vacancy defects can be suppressed by suitable adjustment of the growth condition towards S-rich.

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), National Science Foundation (NSF)
OSTI Identifier:
1045746
Report Number(s):
NREL/JA-5900-53664
Journal ID: ISSN 0003-6951; APPLAB; TRN: US201215%%126
DOE Contract Number:  
AC36-08GO28308
Resource Type:
Journal Article
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 100; Journal Issue: 3; Related Information: Article No. 032104; Journal ID: ISSN 0003-6951
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ABSORPTION; CARRIER DENSITY; DEFECTS; EFFECTIVE MASS; ELECTRIC CONDUCTIVITY; ENERGY GAP; OPTICAL PROPERTIES; ORIENTATION; PHOTOVOLTAIC EFFECT; PHYSICS; THIN FILMS; TIN COMPOUNDS; VACANCIES; photovoltaic material; SnS; thin-film technologies

Citation Formats

Vidal, Julien, Lany, Stephan, d'Avezac, Mayeul, Zunger, Alex, Zakutayev, Andriy, Francis, Jason, and Tate, Janet. Band-Structure, Optical Properties, and Defect Physics of the Photovoltaic Semiconductor SnS. United States: N. p., 2012. Web. doi:10.1063/1.3675880.
Vidal, Julien, Lany, Stephan, d'Avezac, Mayeul, Zunger, Alex, Zakutayev, Andriy, Francis, Jason, & Tate, Janet. Band-Structure, Optical Properties, and Defect Physics of the Photovoltaic Semiconductor SnS. United States. doi:10.1063/1.3675880.
Vidal, Julien, Lany, Stephan, d'Avezac, Mayeul, Zunger, Alex, Zakutayev, Andriy, Francis, Jason, and Tate, Janet. Mon . "Band-Structure, Optical Properties, and Defect Physics of the Photovoltaic Semiconductor SnS". United States. doi:10.1063/1.3675880.
@article{osti_1045746,
title = {Band-Structure, Optical Properties, and Defect Physics of the Photovoltaic Semiconductor SnS},
author = {Vidal, Julien and Lany, Stephan and d'Avezac, Mayeul and Zunger, Alex and Zakutayev, Andriy and Francis, Jason and Tate, Janet},
abstractNote = {SnS is a potential earth-abundant photovoltaic (PV) material. Employing both theory and experiment to assess the PV relevant properties of SnS, we clarify on whether SnS has an indirect or direct band gap and what is the minority carrier effective mass as a function of the film orientation. SnS has a 1.07 eV indirect band gap with an effective absorption onset located 0.4 eV higher. The effective mass of minority carrier ranges from 0.5 m{sub 0} perpendicular to the van der Waals layers to 0.2 m{sub 0} into the van der Waals layers. The positive characteristics of SnS feature a desirable p-type carrier concentration due to the easy formation of acceptor-like intrinsic Sn vacancy defects. Potentially detrimental deep levels due to SnS antisite or S vacancy defects can be suppressed by suitable adjustment of the growth condition towards S-rich.},
doi = {10.1063/1.3675880},
journal = {Applied Physics Letters},
issn = {0003-6951},
number = 3,
volume = 100,
place = {United States},
year = {2012},
month = {1}
}

Works referenced in this record:

Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment
journal, March 2009

  • Wadia, Cyrus; Alivisatos, A. Paul; Kammen, Daniel M.
  • Environmental Science & Technology, Vol. 43, Issue 6
  • DOI: 10.1021/es8019534

Thin‐film CdS/CdTe solar cell with 15.8% efficiency
journal, May 1993

  • Britt, J.; Ferekides, C.
  • Applied Physics Letters, Vol. 62, Issue 22
  • DOI: 10.1063/1.109629

19·9%-efficient ZnO/CdS/CuInGaSe 2 solar cell with 81·2% fill factor
journal, May 2008

  • Repins, Ingrid; Contreras, Miguel A.; Egaas, Brian
  • Progress in Photovoltaics: Research and Applications, Vol. 16, Issue 3
  • DOI: 10.1002/pip.822

Cu2ZnSnS4 thin film solar cells
journal, June 2005


High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber
journal, May 2010

  • Todorov, Teodor K.; Reuter, Kathleen B.; Mitzi, David B.
  • Advanced Materials, Vol. 22, Issue 20, p. E156-E159
  • DOI: 10.1002/adma.200904155

The electronic consequences of multivalent elements in inorganic solar absorbers: Multivalency of Sn in Cu2ZnSnS4
journal, May 2010

  • Biswas, Koushik; Lany, Stephan; Zunger, Alex
  • Applied Physics Letters, Vol. 96, Issue 20
  • DOI: 10.1063/1.3427433

The Consequences of Kesterite Equilibria for Efficient Solar Cells
journal, March 2011

  • Redinger, Alex; Berg, Dominik M.; Dale, Phillip J.
  • Journal of the American Chemical Society, Vol. 133, Issue 10
  • DOI: 10.1021/ja111713g

Influence of composition ratio on properties of Cu2ZnSnS4 thin films fabricated by co-evaporation
journal, August 2010


Photovoltaic properties of SnS based solar cells
journal, November 2006

  • Ramakrishna Reddy, K. T.; Koteswara Reddy, N.; Miles, R. W.
  • Solar Energy Materials and Solar Cells, Vol. 90, Issue 18-19, p. 3041-3046
  • DOI: 10.1016/j.solmat.2006.06.012

SnS thin-films by RF sputtering at room temperature
journal, August 2011

  • Hartman, Katy; Johnson, J. L.; Bertoni, Mariana I.
  • Thin Solid Films, Vol. 519, Issue 21, p. 7421-7424
  • DOI: 10.1016/j.tsf.2010.12.186

Thermally evaporated thin films of SnS for application in solar cell devices
journal, July 2009

  • Miles, Robert W.; Ogah, Ogah E.; Zoppi, Guillaume
  • Thin Solid Films, Vol. 517, Issue 17, p. 4702-4705
  • DOI: 10.1016/j.tsf.2009.03.003

Atomic Layer Deposition of Tin Monosulfide Thin Films
journal, September 2011

  • Sinsermsuksakul, Prasert; Heo, Jaeyeong; Noh, Wontae
  • Advanced Energy Materials, Vol. 1, Issue 6, p. 1116-1125
  • DOI: 10.1002/aenm.201100330

Iron Chalcogenide Photovoltaic Absorbers
journal, August 2011

  • Yu, Liping; Lany, Stephan; Kykyneshi, Robert
  • Advanced Energy Materials, Vol. 1, Issue 5
  • DOI: 10.1002/aenm.201100351

Characterization of vacuum-evaporated tin sulfide film for solar cell materials
journal, September 1994

  • Noguchi, Hidenori; Setiyadi, Agus; Tanamura, Hiromasa
  • Solar Energy Materials and Solar Cells, Vol. 35, p. 325-331
  • DOI: 10.1016/0927-0248(94)90158-9

Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
journal, March 1961

  • Shockley, William; Queisser, Hans J.
  • Journal of Applied Physics, Vol. 32, Issue 3, p. 510-519
  • DOI: 10.1063/1.1736034

Investigations on SnS
journal, October 1961

  • Albers, W.; Haas, C.; Vink, H. J.
  • Journal of Applied Physics, Vol. 32, Issue 10
  • DOI: 10.1063/1.1777047

Sulfurization Growth of SnS Thin Films and Experimental Determination of Valence Band Discontinuity for SnS-Related Solar Cells
journal, May 2011

  • Sugiyama, Mutsumi; Murata, Yoshitsuna; Shimizu, Tsubasa
  • Japanese Journal of Applied Physics, Vol. 50, Issue 5
  • DOI: 10.1143/JJAP.50.05FH03

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Ab initio study of bilateral doping within the MoS 2 -NbS 2 system
journal, October 2008

  • Ivanovskaya, Viktoria V.; Zobelli, Alberto; Gloter, Alexandre
  • Physical Review B, Vol. 78, Issue 13
  • DOI: 10.1103/PhysRevB.78.134104

Pressure-induced structural phase transition in the IV–VI semiconductor SnS
journal, May 2004


Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs
journal, December 2008


Halogen n-type doping of chalcopyrite semiconductors
journal, January 2005

  • Lany, Stephan; Zhao, Yu-Jun; Persson, Clas
  • Applied Physics Letters, Vol. 86, Issue 4
  • DOI: 10.1063/1.1854218

Semiconductor thermochemistry in density functional calculations
journal, December 2008


Self-consistent G W calculations for semiconductors and insulators
journal, June 2007


Dielectric properties and excitons for extended systems from hybrid functionals
journal, September 2008


Light- and bias-induced metastabilities in Cu(In,Ga)Se[sub 2] based solar cells caused by the (V[sub Se]-V[sub Cu]) vacancy complex
journal, January 2006

  • Lany, Stephan; Zunger, Alex
  • Journal of Applied Physics, Vol. 100, Issue 11
  • DOI: 10.1063/1.2388256

Thin film preparation and characterization of wide band gap Cu3TaQ4 (Q = S or Se) p-type semiconductors
journal, February 2009


Tunable properties of wide-band gap p-type BaCu(Ch1−xChx′)F (Ch = S, Se, Te) thin-film solid solutions
journal, July 2010