skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A new high-pressure phase transition in natural Fe-bearing orthoenstatite

Abstract

Single-crystal X-ray structure refinements have been carried out on natural Fe-bearing orthoenstatite (OEN) at pressures up to 14.53 GPa. We report a new high-pressure phase transition from OEN to a monoclinic phase (HPCEN2) with space group P2{sub 1}/c, with a density change of {approx}1.9(3)%. The HPCEN2 phase is crystallographically different from low-pressure clinoenstatite (LPCEN), which also has P2{sub 1}/c symmetry. Upon release of pressure HPCEN2 reverts to OEN, and the transition pressure is bracketed between 9.96 and 14.26 GPa at room temperature. We find no evidence for a C2/c phase at high pressure. The lattice constants for the new phase at 14.26 GPa are a = 17.87(2), b = 8.526(9), c = 4.9485(10) {angstrom}, {beta} = 92.88(4){sup o} [{rho} = 3.658(9) g/cm{sup 3}]. Refinement of the new structure indicates rotation of tetrahedral chain as the key characteristic of this transition. This experiment points to the possibility of OEN and HPCEN2 as the stable phases in Earth's upper mantle.

Authors:
; ;  [1];  [2]
  1. (UC)
  2. (
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
DOE - BASIC ENERGY SCIENCESNSF
OSTI Identifier:
1045027
Resource Type:
Journal Article
Resource Relation:
Journal Name: Am. Mineral.; Journal Volume: 97; Journal Issue: (7) ; 07, 2012
Country of Publication:
United States
Language:
ENGLISH

Citation Formats

Zhang, Jin S., Dera, Przemyslaw, Bass, Jay D., and UIUC). A new high-pressure phase transition in natural Fe-bearing orthoenstatite. United States: N. p., 2016. Web. doi:10.2138/am.2012.4072.
Zhang, Jin S., Dera, Przemyslaw, Bass, Jay D., & UIUC). A new high-pressure phase transition in natural Fe-bearing orthoenstatite. United States. doi:10.2138/am.2012.4072.
Zhang, Jin S., Dera, Przemyslaw, Bass, Jay D., and UIUC). Fri . "A new high-pressure phase transition in natural Fe-bearing orthoenstatite". United States. doi:10.2138/am.2012.4072.
@article{osti_1045027,
title = {A new high-pressure phase transition in natural Fe-bearing orthoenstatite},
author = {Zhang, Jin S. and Dera, Przemyslaw and Bass, Jay D. and UIUC)},
abstractNote = {Single-crystal X-ray structure refinements have been carried out on natural Fe-bearing orthoenstatite (OEN) at pressures up to 14.53 GPa. We report a new high-pressure phase transition from OEN to a monoclinic phase (HPCEN2) with space group P2{sub 1}/c, with a density change of {approx}1.9(3)%. The HPCEN2 phase is crystallographically different from low-pressure clinoenstatite (LPCEN), which also has P2{sub 1}/c symmetry. Upon release of pressure HPCEN2 reverts to OEN, and the transition pressure is bracketed between 9.96 and 14.26 GPa at room temperature. We find no evidence for a C2/c phase at high pressure. The lattice constants for the new phase at 14.26 GPa are a = 17.87(2), b = 8.526(9), c = 4.9485(10) {angstrom}, {beta} = 92.88(4){sup o} [{rho} = 3.658(9) g/cm{sup 3}]. Refinement of the new structure indicates rotation of tetrahedral chain as the key characteristic of this transition. This experiment points to the possibility of OEN and HPCEN2 as the stable phases in Earth's upper mantle.},
doi = {10.2138/am.2012.4072},
journal = {Am. Mineral.},
number = (7) ; 07, 2012,
volume = 97,
place = {United States},
year = {Fri Jul 29 00:00:00 EDT 2016},
month = {Fri Jul 29 00:00:00 EDT 2016}
}
  • The structural phase transition of the titanomagnetite (Fe 3–xTi xO 4) solid solution under pressures up to 60 GPa has been clarified by single-crystal and powder diffraction studies using synchrotron radiation and a diamond-anvil cell. Present Rietveld structure refinements of the solid solution prove that the prefered cation distribution is based on the crystal field preference rather than the magnetic spin ordering in the solid solution. The Ti-rich phases in 0.734 ≤ x ≤1.0 undergo a phase transformation from the cubic spinel of Fd3m to the tetragonal spinel structure of I4 1/amd with c/a < 1.0. The transition is drivenmore » by a Jahn-Teller effect of IVFe 2+ (3d 6) on the tetrahedral site. The c/a < 1 ratio is induced by lifting of the degeneracy of the e orbitals by raising the d x2-y2 orbital below the energy of the d z2 orbital. The distortion characterized by c/a < 1 is more pronounced with increasing Ti content in the Fe 3–xTi xO 4 solid solutions and with increasing pressure. An X-ray emission experiment of Fe 2TiO 4 at high pressures confirms the spin transition of FeKβ from high spin to intermediate spin (IS) state. The high spin (HS)-to-low spin (LS) transition starts at 14 GPa and the IS state gradually increases with compression. The VIFe 2+ in the octahedral site is more prone for the HS-to-LS transition, compared with Fe 2+ in the fourfold- or eightfold-coordinated site. The transition to the orthorhombic post-spinel structure with space group Cmcm has been confirmed in the whole compositional range of Fe 3–xTi xO 4. The transition pressure decreases from 25 GPa (x = 0.0) to 15 GPa (x = 1.0) with increasing Ti content. There are two cation sites in the orthorhombic phase: M1 and M2 sites of eightfold and sixfold coordination, respectively. Fe 2+ and Ti 4+ are disordered on the M2 site. This structural change is accelerated at higher pressures due to the spin transition of Fe 2+ in the octahedral site. This is because the ionic radius of VIFe 2+ becomes 20% shortened by the spin transition. At 53 GPa, the structure transforms to another high-pressure polymorph with Pmma symmetry with the ordered structure of Ti and Fe atoms in the octahedral site. This structure change results from the order-disorder transition.« less
  • The crystal structure of a new complex Ti-Cr oxide phase, K{sub 0.82}Mg{sub 1.68}(Cr{sub 2.84}Fe{sub 0.84}Ti{sub 2.11}Zr{sub 0.08})O{sub 12}, synthesized at 13GPa and 1400{sup o}C, has been determined with single-crystal X-ray diffraction. It has a hexagonal symmetry with the space group P6{sub 3}/m and unit-cell parameters a=9.1763(13) and c=2.8790(6)A, V=209.89(8)A3, Z=1. The structure is characterized by the hollandite-type double chains of edge-shared M2 octahedra occupied by trivalent and tetravalent cations (Ti+Cr+Fe+Zr); these double chains are linked to one another through shared octahedral apexes to form a framework structure containing two types of tunnels running parallel to the c-axis. One type ofmore » tunnels has a hexagonal cross-section and is occupied by large K{sup +}, whereas the other has a triangular cross-section and is occupied by Mg{sup 2+}. The K{sup +} cation is disordered between two crystallographically equivalent (2a) sites in the tunnels and displays a U33 displacement parameter that is significantly greater than U11. The new high-pressure phase reported in this study possesses many structural features similar to those for the hollandite compounds, making it a candidate for the 1-D fast ionic conductors.« less