skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Current Status of the Advanced High Temperature Reactor

Abstract

The Advanced High Temperature Reactor (AHTR) is a design concept for a central station type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently under development by Oak Ridge National Laboratory for the U. S. Department of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR design option exploration is a multidisciplinary design effort that combines core neutronic and fuel configuration evaluation with structural, thermal, and hydraulic analysis to produce a reactor and vessel concept and place it within a power generation station. The AHTR design remains at the notional level of maturity, as key technologies require further development and a logically complete integrated design has not been finalized. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [2]
  1. ORNL
  2. University of California, Berkeley
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1044659
DOE Contract Number:
DE-AC05-00OR22725
Resource Type:
Conference
Resource Relation:
Conference: 2012 International Congress on Advances in Nuclear Power Plants (ICAPP '12), Chicago, IL, USA, 20120624, 20120628
Country of Publication:
United States
Language:
English
Subject:
21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; CONFIGURATION; DESIGN; EVALUATION; EXPLORATION; FLUORIDES; FUEL CYCLE; HYDRAULICS; NUCLEAR POWER PLANTS; ORNL; POWER GENERATION; SAFETY; TRANSPORT

Citation Formats

Holcomb, David Eugene, Ilas, Dan, Qualls, A L, Peretz, Fred J, Varma, Venugopal Koikal, Bradley, Eric Craig, and Cisneros, Anselmo T. Current Status of the Advanced High Temperature Reactor. United States: N. p., 2012. Web.
Holcomb, David Eugene, Ilas, Dan, Qualls, A L, Peretz, Fred J, Varma, Venugopal Koikal, Bradley, Eric Craig, & Cisneros, Anselmo T. Current Status of the Advanced High Temperature Reactor. United States.
Holcomb, David Eugene, Ilas, Dan, Qualls, A L, Peretz, Fred J, Varma, Venugopal Koikal, Bradley, Eric Craig, and Cisneros, Anselmo T. 2012. "Current Status of the Advanced High Temperature Reactor". United States. doi:.
@article{osti_1044659,
title = {Current Status of the Advanced High Temperature Reactor},
author = {Holcomb, David Eugene and Ilas, Dan and Qualls, A L and Peretz, Fred J and Varma, Venugopal Koikal and Bradley, Eric Craig and Cisneros, Anselmo T.},
abstractNote = {The Advanced High Temperature Reactor (AHTR) is a design concept for a central station type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently under development by Oak Ridge National Laboratory for the U. S. Department of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR design option exploration is a multidisciplinary design effort that combines core neutronic and fuel configuration evaluation with structural, thermal, and hydraulic analysis to produce a reactor and vessel concept and place it within a power generation station. The AHTR design remains at the notional level of maturity, as key technologies require further development and a logically complete integrated design has not been finalized. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2012,
month = 1
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The Advanced High Temperature Reactor (AHTR) is a design concept for a central station type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently under development by Oak Ridge National Laboratory for the U. S. Dept. of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR design option exploration ismore » a multidisciplinary design effort that combines core neutronic and fuel configuration evaluation with structural, thermal, and hydraulic analysis to produce a reactor and vessel concept and place it within a power generation station. The AHTR design remains at the notional level of maturity, as key technologies require further development and a logically complete integrated design has not been finalized. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. (authors)« less
  • The United States Department of Energy’s Advanced Reactor Technologies (ART) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experimentsmore » are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and completed in October 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and completed in April 2014. Since the purpose of this experiment was to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment was significantly different from the first two experiments, though the control and monitoring systems are very similar. The final experiment, AGR-5/6/7, is scheduled to begin irradiation in early summer 2017.« less
  • A new reactor concept, designated the Advanced High-Temperature Reactor (AHTR), is being developed that uses liquid fluoride salt as a coolant, graphite moderator and high-temperature coated particle fuel. The concept is being supported by the U.S. Department of Energy as part of the Generation IV program as a 'coolant variant' of the Very High-Temperature Reactor because it shares many of the same fuel, moderator and material technologies. The purpose of the AHTR is to provide an advanced design that is sufficiently robust to allow a growth path to higher power output and higher temperatures, and also offering the potential formore » highly competitive economics. Although it creates some unique technology challenges of its own, the AHTR has many strong advantages, such as: lower reactor fuel temperatures, low-pressure reactor vessel and piping, enhanced safety features, and improved economics. Several analyses have been performed during the past two years to demonstrate the physics viability of the concept and to support the development of a preconceptual design. The evolution of the concept is presented, along with a description of the present design and a summary of key performance analyses. (authors)« less
  • After selecting the combination of the sodium-cooled fast reactor (SFR) with oxide fuel, the advanced aqueous reprocessing and the simplified pelletizing fuel fabrication as the most promising concept of FR cycle system, 'Feasibility Study on Commercialized Fast Reactor Cycle Systems' was finalized in 2006. Instead, a new project, Fast Reactor Cycle Technology Development Project (FaCT Project) was launched in Japan focusing on development of the selected concepts. This paper describes the current status and perspective of the advanced loop type SFR system in the FaCT Project, especially on the design requirements, current design as well as the related innovative technologiesmore » together with the development road-map. Some considerations on advantages of the advanced loop type design are also described. (authors)« less
  • No abstract prepared.