skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Integrated Genome-Based Studies of Shewanella Echophysiology

Abstract

Shewanella oneidensis MR-1 is a motile, facultative {gamma}-Proteobacterium with remarkable respiratory versatility; it can utilize a range of organic and inorganic compounds as terminal electronacceptors for anaerobic metabolism. The ability to effectively reduce nitrate, S0, polyvalent metals andradionuclides has established MR-1 as an important model dissimilatory metal-reducing microorganism for genome-based investigations of biogeochemical transformation of metals and radionuclides that are of concern to the U.S. Department of Energy (DOE) sites nationwide. Metal-reducing bacteria such as Shewanella also have a highly developed capacity for extracellular transfer of respiratory electrons to solid phase Fe and Mn oxides as well as directly to anode surfaces in microbial fuel cells. More broadly, Shewanellae are recognized free-living microorganisms and members of microbial communities involved in the decomposition of organic matter and the cycling of elements in aquatic and sedimentary systems. To function and compete in environments that are subject to spatial and temporal environmental change, Shewanella must be able to sense and respond to such changes and therefore require relatively robust sensing and regulation systems. The overall goal of this project is to apply the tools of genomics, leveraging the availability of genome sequence for 18 additional strains of Shewanella, to better understand the ecophysiologymore » and speciation of respiratory-versatile members of this important genus. To understand these systems we propose to use genome-based approaches to investigate Shewanella as a system of integrated networks; first describing key cellular subsystems - those involved in signal transduction, regulation, and metabolism - then building towards understanding the function of whole cells and, eventually, cells within populations. As a general approach, this project will employ complimentary "top-down" - bioinformatics-based genome functional predictions, high-throughput expression analyses, and functional genomics approaches to uncover key genes as well as metabolic and regulatory networks. The "bottom-up" component employs more traditional approaches including genetics, physiology and biochemistry to test or verify predictions. This information will ultimately be linked to analyses of signal transduction and transcriptional regulatory systems and used to develop a linked model that will contribute to understanding the ecophysiology of Shewanella in redox stratified environments. A central component of this effort is the development of a data and knowledge integration environment that will allow investigators to query across the individual research domains, link to analysis applications, visualize data in a cell systems context, and produce new knowledge, while minimizing the effort, time and complexity to participating institutions.« less

Authors:
Publication Date:
Research Org.:
Marine Biological Laboratory
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1044590
Report Number(s):
DOE/ER/64511-1
DOE Contract Number:  
FG02-08ER64511
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; Office of Biological and Environmental Research, Genomics:GTL Program

Citation Formats

Margrethe H. Serres. Integrated Genome-Based Studies of Shewanella Echophysiology. United States: N. p., 2012. Web. doi:10.2172/1044590.
Margrethe H. Serres. Integrated Genome-Based Studies of Shewanella Echophysiology. United States. doi:10.2172/1044590.
Margrethe H. Serres. Fri . "Integrated Genome-Based Studies of Shewanella Echophysiology". United States. doi:10.2172/1044590. https://www.osti.gov/servlets/purl/1044590.
@article{osti_1044590,
title = {Integrated Genome-Based Studies of Shewanella Echophysiology},
author = {Margrethe H. Serres},
abstractNote = {Shewanella oneidensis MR-1 is a motile, facultative {gamma}-Proteobacterium with remarkable respiratory versatility; it can utilize a range of organic and inorganic compounds as terminal electronacceptors for anaerobic metabolism. The ability to effectively reduce nitrate, S0, polyvalent metals andradionuclides has established MR-1 as an important model dissimilatory metal-reducing microorganism for genome-based investigations of biogeochemical transformation of metals and radionuclides that are of concern to the U.S. Department of Energy (DOE) sites nationwide. Metal-reducing bacteria such as Shewanella also have a highly developed capacity for extracellular transfer of respiratory electrons to solid phase Fe and Mn oxides as well as directly to anode surfaces in microbial fuel cells. More broadly, Shewanellae are recognized free-living microorganisms and members of microbial communities involved in the decomposition of organic matter and the cycling of elements in aquatic and sedimentary systems. To function and compete in environments that are subject to spatial and temporal environmental change, Shewanella must be able to sense and respond to such changes and therefore require relatively robust sensing and regulation systems. The overall goal of this project is to apply the tools of genomics, leveraging the availability of genome sequence for 18 additional strains of Shewanella, to better understand the ecophysiology and speciation of respiratory-versatile members of this important genus. To understand these systems we propose to use genome-based approaches to investigate Shewanella as a system of integrated networks; first describing key cellular subsystems - those involved in signal transduction, regulation, and metabolism - then building towards understanding the function of whole cells and, eventually, cells within populations. As a general approach, this project will employ complimentary "top-down" - bioinformatics-based genome functional predictions, high-throughput expression analyses, and functional genomics approaches to uncover key genes as well as metabolic and regulatory networks. The "bottom-up" component employs more traditional approaches including genetics, physiology and biochemistry to test or verify predictions. This information will ultimately be linked to analyses of signal transduction and transcriptional regulatory systems and used to develop a linked model that will contribute to understanding the ecophysiology of Shewanella in redox stratified environments. A central component of this effort is the development of a data and knowledge integration environment that will allow investigators to query across the individual research domains, link to analysis applications, visualize data in a cell systems context, and produce new knowledge, while minimizing the effort, time and complexity to participating institutions.},
doi = {10.2172/1044590},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2012},
month = {6}
}