skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ultlra-intense laser-matter interactions at extreme parameters

Abstract

The field of shortpulse lasers has seen rapid growth in the recent years with the three major boundaries of energy, pulse duration and repetition rate being pushed in ever extremer regions. At peak powers, already exceeding 10{sup 22} W/cm{sup 2}, in virtually every experiment in relativistic laser physics, the laser pulse interacts with a more or less extended and heated plasma, due to prepulses and ASE-like pedestals on ps - ns time scales. By developing a new technique for ultrahigh contrast, we were able to initiate the next paradigm shift in relativistic laser-matter interactions, allowing us to interact ultrarelativistic pulses volumetrically with overdense targets. This becomes possible by using target and laser parameters that will turn the target relativistically transparent during the few 10s-100s femtoseconds fo the interaction. Specifically, we interact an ultraintese, ultrahigh contrast pulse with solid density, free standing, nanometer diamond target. This paradigm change towards a volumetric overdense interaction in turn enables new particle acceleration mechanisms for both electrons and ions, as well as forward directed relativistic surface harmonics. We report here on first experiments done on those topics at the 200 TW Trident laser at Los Alamos as well as at the Ti:Sapphire system at MBI.more » We will compare the experimental data to massive large scale 3D simulations done on the prototype of LANL's new Petafiop supercomputer Roadrunner, which is leading the current top 500 list. Specifically, we developed a shortpulse OPA based pulse cleaning technique. Fielding it at the Trident 200 TW laser at Los Alamos, we were able to improve the pulse contrast by 6 orders of magnitude to better than 2 x 10{sup -12} at less than a ps. This enabled for the first time the interaction of a 100J, 200TW laser pulse with a truly solid target with virtually no expansion before the main pulse - target interaction, making possible the use of very thin targets, The thinnest of these at less than 3nm, i.e. 1/300 of the laser wavelength, are even thinner than the plasma skin depth. This drastically changes the laser-matter interaction physics leading to the emergence of new particle acceleration mechanisms, like Break-Out Afterburner (BOA) Acceleration, driven by a relativistic, kinetic plasma instability or Radiation Pressure Acceleration (RPA), driven by stabilized charge separation. Furthermore, these interactions also produce relativistic high harmonics in forward direction as well as mono-en,ergetic electron pulses which might lend itself as a source for fully coherent Thomson scattering in the mulit-keV regime. In this talk I will present an overview over the laser developments leading to this paradigm change as well as over the theoretical and experimental results following from it. Specifically we were able for the first time to demonstrate BOA acceleration of Carbon ions to up to 0.5 GeV using a laser pulse with {approx}10{sup 20} W/cm{sup 2} intensity and showing the scalability of this mechanism into regimes relevant for Hadron Therapy. We were further able to demonstrate mono-energetic electron break-out from ultrathin targets, as a first step towards a flying mirror.« less

Authors:
 [1]
  1. Los Alamos National Laboratory
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1042957
Report Number(s):
LA-UR-10-07905; LA-UR-10-7905
TRN: US1202970
DOE Contract Number:  
AC52-06NA25396
Resource Type:
Conference
Resource Relation:
Conference: APS DPP meeting ; November 10, 2010 ; Chicago, IL
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ACCELERATION; AFTERBURNERS; CARBON IONS; CLEANING; DIAMONDS; ELECTRONS; HADRONS; HARMONICS; KINETICS; LASERS; PEAK LOAD; PHYSICS; PLASMA; PLASMA INSTABILITY; RADIATION PRESSURE; SUPERCOMPUTERS; TARGETS; THERAPY; THOMSON SCATTERING

Citation Formats

Hegellich, Bjorn M. Ultlra-intense laser-matter interactions at extreme parameters. United States: N. p., 2010. Web.
Hegellich, Bjorn M. Ultlra-intense laser-matter interactions at extreme parameters. United States.
Hegellich, Bjorn M. Wed . "Ultlra-intense laser-matter interactions at extreme parameters". United States. https://www.osti.gov/servlets/purl/1042957.
@article{osti_1042957,
title = {Ultlra-intense laser-matter interactions at extreme parameters},
author = {Hegellich, Bjorn M},
abstractNote = {The field of shortpulse lasers has seen rapid growth in the recent years with the three major boundaries of energy, pulse duration and repetition rate being pushed in ever extremer regions. At peak powers, already exceeding 10{sup 22} W/cm{sup 2}, in virtually every experiment in relativistic laser physics, the laser pulse interacts with a more or less extended and heated plasma, due to prepulses and ASE-like pedestals on ps - ns time scales. By developing a new technique for ultrahigh contrast, we were able to initiate the next paradigm shift in relativistic laser-matter interactions, allowing us to interact ultrarelativistic pulses volumetrically with overdense targets. This becomes possible by using target and laser parameters that will turn the target relativistically transparent during the few 10s-100s femtoseconds fo the interaction. Specifically, we interact an ultraintese, ultrahigh contrast pulse with solid density, free standing, nanometer diamond target. This paradigm change towards a volumetric overdense interaction in turn enables new particle acceleration mechanisms for both electrons and ions, as well as forward directed relativistic surface harmonics. We report here on first experiments done on those topics at the 200 TW Trident laser at Los Alamos as well as at the Ti:Sapphire system at MBI. We will compare the experimental data to massive large scale 3D simulations done on the prototype of LANL's new Petafiop supercomputer Roadrunner, which is leading the current top 500 list. Specifically, we developed a shortpulse OPA based pulse cleaning technique. Fielding it at the Trident 200 TW laser at Los Alamos, we were able to improve the pulse contrast by 6 orders of magnitude to better than 2 x 10{sup -12} at less than a ps. This enabled for the first time the interaction of a 100J, 200TW laser pulse with a truly solid target with virtually no expansion before the main pulse - target interaction, making possible the use of very thin targets, The thinnest of these at less than 3nm, i.e. 1/300 of the laser wavelength, are even thinner than the plasma skin depth. This drastically changes the laser-matter interaction physics leading to the emergence of new particle acceleration mechanisms, like Break-Out Afterburner (BOA) Acceleration, driven by a relativistic, kinetic plasma instability or Radiation Pressure Acceleration (RPA), driven by stabilized charge separation. Furthermore, these interactions also produce relativistic high harmonics in forward direction as well as mono-en,ergetic electron pulses which might lend itself as a source for fully coherent Thomson scattering in the mulit-keV regime. In this talk I will present an overview over the laser developments leading to this paradigm change as well as over the theoretical and experimental results following from it. Specifically we were able for the first time to demonstrate BOA acceleration of Carbon ions to up to 0.5 GeV using a laser pulse with {approx}10{sup 20} W/cm{sup 2} intensity and showing the scalability of this mechanism into regimes relevant for Hadron Therapy. We were further able to demonstrate mono-energetic electron break-out from ultrathin targets, as a first step towards a flying mirror.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2010},
month = {11}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: