skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Canadian House Dust Study: Lead Bioaccessibility and Speciation

Journal Article · · Environmental Science and Technology
DOI:https://doi.org/10.1021/es104056m· OSTI ID:1041927

Vacuum samples were collected from 1025 randomly selected urban Canadian homes to investigate bioaccessible Pb (Pb{sub S}) concentrations in settled house dust. Results indicate a polymodal frequency distribution, consisting of three lognormally distributed subpopulations defined as 'urban background' (geomean 58 {micro}g g{sup -1}), 'elevated' (geomean 447 {micro}g g{sup -1}), and 'anomalous' (geomean 1730 {micro}g g{sup -1}). Dust Pb{sub S} concentrations in 924 homes (90%) fall into the 'urban background' category. The elevated and anomalous subpopulations predominantly consist of older homes located in central core areas of cities. The influence of house age is evidenced by a moderate correlation between house age and dust Pb{sub S} content (R{sup 2} = 0.34; n = 1025; p < 0.01), but it is notable that more than 10% of homes in the elevated/anomalous category were built after 1980. Conversely, the benefit of home remediation is evidenced by the large number of homes (33%) in the background category that were built before 1960. The dominant dust Pb species determined using X-ray Absorption Spectroscopy were as follows: Pb carbonate, Pb hydroxyl carbonate, Pb sulfate, Pb chromate, Pb oxide, Pb citrate, Pb metal, Pb adsorbed to Fe- and Al-oxyhydroxides, and Pb adsorbed to humate. Pb bioaccessibility estimated from solid phase speciation predicts Pb bioaccessibility measured using a simulated gastric extraction (R{sup 2} = 0.85; n = 12; p < 0.0001). The trend toward increased Pb bioaccessibility in the elevated and anomalous subpopulations (75% {+-} 18% and 81% {+-} 8%, respectively) compared to background (63% {+-} 18%) is explained by the higher proportion of bioaccessible compounds used as pigments in older paints (Pb carbonate and Pb hydroxyl carbonate). This population-based study provides a nationally representative urban baseline for applications in human health risk assessment and risk management.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Organization:
USDOE SC OFFICE OF SCIENCE (SC)
DOE Contract Number:
DE-AC02-98CH10886
OSTI ID:
1041927
Report Number(s):
BNL-97605-2012-JA; ESTHAG; TRN: US201212%%338
Journal Information:
Environmental Science and Technology, Vol. 45, Issue 11; ISSN 0013-936X
Country of Publication:
United States
Language:
English