skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Methane Recovery from Hydrate-bearing Sediments

Abstract

Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stabilitymore » field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with emphasis; (6) detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2; (7) the relevance of fines in otherwise clean sand sediments on gas recovery and related phenomena such as fines migration and clogging, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.« less

Authors:
;
Publication Date:
Research Org.:
Georgia Tech Research Corporation
Sponsoring Org.:
USDOE
OSTI Identifier:
1041003
DOE Contract Number:
FC26-06NT42963
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
03 NATURAL GAS; ALGORITHMS; BEARINGS; DEPRESSURIZATION; DISSOCIATION; DISSOLUTION; FLUID FLOW; FOCUSING; FRACTURES; GAS HYDRATES; GREENHOUSE EFFECT; HYDRATES; INSTABILITY; METHANE; PERMAFROST; PHYSICAL PROPERTIES; SALINITY; SAND; SEDIMENTS; SOLUBILITY; STABILITY; TRANSIENTS

Citation Formats

J. Carlos Santamarina, and Costas Tsouris. Methane Recovery from Hydrate-bearing Sediments. United States: N. p., 2011. Web. doi:10.2172/1041003.
J. Carlos Santamarina, & Costas Tsouris. Methane Recovery from Hydrate-bearing Sediments. United States. doi:10.2172/1041003.
J. Carlos Santamarina, and Costas Tsouris. 2011. "Methane Recovery from Hydrate-bearing Sediments". United States. doi:10.2172/1041003. https://www.osti.gov/servlets/purl/1041003.
@article{osti_1041003,
title = {Methane Recovery from Hydrate-bearing Sediments},
author = {J. Carlos Santamarina and Costas Tsouris},
abstractNote = {Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with emphasis; (6) detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2; (7) the relevance of fines in otherwise clean sand sediments on gas recovery and related phenomena such as fines migration and clogging, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.},
doi = {10.2172/1041003},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2011,
month = 4
}

Technical Report:

Save / Share:
  • High-resolution, deep-tow multichannel seismic data are used to investigate the detailed structure of sediments containing methane hydrate. These data support thick, laterally extensive layers of methane hydrate-bearing sediment underlain by a bottom simulating reflector (BSR) and spatially discontinuous zones of hydrate within the sediments above the BSR depth where no BSR is present. These data resolve normal faults which extend from the surface through the BSR with apparent offsets of up to 20 m. A phase inversion identified at the top of the BSR shows that the material immediately beneath the BSR has anomalously low velocity, consistent with a layermore » of sediment containing free methane gas. The fault offsets along the BSR and consistent with a pressure change of approx. 200 kPa (approx. 2 bars) across the fault zone.... Directional ambient noise, Bottom scattering, Deep-towed array geophysical system, Towed array, Ocean-bottom seismometer« less
  • Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleummore » infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate« less
  • The main objective of this study is to develop the necessary knowledge base and quantitative predictive capability for the description of geomechanical performance of hydrate bearing sediments (hereafter referred to as HBS) in oceanic environments. The focus is on the determination of the envelope of hydrate stability under conditions typical of those related to the construction and operation of offshore platforms. To achieve this objective, we have developed a robust numerical simulator of hydrate behavior in geologic media by coupling a reservoir model with a commercial geomechanical code. To be sure our geomechanical modeling is realistic, we are also investigatingmore » the geomechanical behavior of oceanic HBS using pore-scale models (conceptual and mathematical) of fluid flow, stress analysis, and damage propagation. In Phase II of the project, we will review all published core data and generate additional core data to verify the models. To generate data for our models, we are using data from the literature and we will be conducting laboratory studies in 2007 that generate data to (1) evaluate the conceptual pore-scale models, (2) calibrate the mathematical models, (3) determine dominant relations and critical parameters defining the geomechanical behavior of HBS, and (4) establish relationships between the geomechanical status of HBS and the corresponding geophysical signature. The milestones for Phase I of this project are given as follows: Literature survey on typical sediments containing gas hydrates in the ocean (TAMU); Recommendations on how to create typical sediments in the laboratory (TAMU); Demonstrate that typical sediments can be created in a repeatable manner in the laboratory and gas hydrates can be created in the pore space (TAMU); Develop a conceptual pore-scale model based on available data and reports (UCB); Test the developed pore-scale concepts on simple configurations and verify the results against known measurements and observations (UCB); Complete the FLAC3D routines that will be linked with the reservoir model (LBNL); Complete the TOUGH+/HYDRATE modifications and extensions (LBNL); Complete the TOUGH+/FLAC3D interaction interface (LBNL); Integrate and test the coupled geomechanical numerical model TFxH/FLAC3D (LBNL); and Demonstrate that Petrel can be used to develop an earth model for providing data to the TOUGH+/FLAC3D (SLB).« less
  • Gas hydrates are solid compounds made of water molecules clustered around low molecular weight gas molecules such as methane, hydrogen, and carbon dioxide. Methane hydrates form under pressure (P) and temperature (T) conditions that are common in sub-permafrost layers and in deep marine sediments. Stability conditions constrain the occurrence of gas hydrates to submarine sediments and permafrost regions. The amount of technically recoverable methane trapped in gas hydrate may exceed 104tcf. Gas hydrates are a potential energy resource, can contribute to climate change, and can cause large-scale seafloor instabilities. In addition, hydrate formation can be used for CO2 sequestration (alsomore » through CO2-CH4 replacement), and efficient geological storage seals. The experimental study of hydrate bearing sediments has been hindered by the very low solubility of methane in water (lab testing), and inherent sampling difficulties associated with depressurization and thermal changes during core extraction. This situation has prompted more decisive developments in numerical modeling in order to advance the current understanding of hydrate bearing sediments, and to investigate/optimize production strategies and implications. The goals of this research has been to addresses the complex thermo-hydro-chemo-mechanical THCM coupled phenomena in hydrate-bearing sediments, using a truly coupled numerical model that incorporates sound and proven constitutive relations, satisfies fundamental conservation principles. Analytical solutions aimed at verifying the proposed code have been proposed as well. These tools will allow to better analyze available data and to further enhance the current understanding of hydrate bearing sediments in view of future field experiments and the development of production technology.« less
  • Reservoir characterization and simulation require reliable parameters to anticipate hydrate deposits responses and production rates. The acquisition of the required fundamental properties currently relies on wireline logging, pressure core testing, and/or laboratory observations of synthesized specimens, which are challenged by testing capabilities and innate sampling disturbances. The project reviews hydrate-bearing sediments, properties, and inherent sampling effects, albeit lessen with the developments in pressure core technology, in order to develop robust correlations with index parameters. The resulting information is incorporated into a tool for optimal field characterization and parameter selection with uncertainty analyses. Ultimately, the project develops a borehole tool formore » the comprehensive characterization of hydrate-bearing sediments at in situ, with the design recognizing past developments and characterization experience and benefited from the inspiration of nature and sensor miniaturization.« less