skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Utilizing the Inherent Electrolysis in a Chip-Based Nanoelectrospray Emitter System to Facilitate Selective Ionization and Mass Spectrometric Analysis of Metallo Alkylporphyrins

Abstract

A commercially available chip-based infusion nanoelectrospray ionization system was used to ionize metallo alkylporphyrins for mass spectrometric detection and structure elucidation by mass spectrometry. Different ionic forms of model compounds (nickel (II), vanadyl (II), copper (II) and cobalt (II) octaethylporphyrin) were created by using two different types of conductive pipette tips supplied with the device. These pipette tips provide the conductive contact to solution at which the electrolysis process inherent to electrospray takes places in the device. The original unmodified, bare carbon-impregnated plastic pipette tips, were exploited to intentionally electrochemically oxidize (ionize) the porphyrins to form molecular radical cations for detection. Use of modified pipette tips, with a surface coating devised to inhibit analyte mass transport to the surface, was shown to limit the ionic species observed in the mass spectra of these porphyrins largely, but not exclusively, to the protonated molecule. Under the conditions of these experiments, the effective upper potential limit for oxidation with the uncoated pipette tip was 1.1 V or less and the coated pipette tips effectively prevented the oxidation of analytes with redox potentials greater than about 0.25 V. Product ion spectra of either molecular ionic species could be used to determine the alkyl chainmore » length on the porphyrin macrocycle. The utility of this electrochemical ionization approach for the analysis of naturally occurring samples was demonstrated using nickel geoporphyrin fractions isolated from Gilsonite bitumen. Acquiring neutral loss spectra as a means to improve the specificity of detection in these complex natural samples was also illustrated.« less

Authors:
 [1];  [1]
  1. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1038803
DOE Contract Number:
DE-AC05-00OR22725
Resource Type:
Journal Article
Resource Relation:
Journal Name: Analytical and Bioanalytical Chemistry; Journal Volume: 403; Journal Issue: 2
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; CATIONS; CHAINS; COBALT; COPPER; DETECTION; ELECTROLYSIS; INFUSION; IONIZATION; MASS SPECTRA; MASS SPECTROSCOPY; NICKEL; OXIDATION; PLASTICS; PORPHYRINS; RADICALS; REDOX POTENTIAL; SPECIFICITY; SPECTRA; SURFACE COATING; TRANSPORT; electrospray; electrochemistry; oxidation; porphyrins; Gilsonite

Citation Formats

Van Berkel, Gary J, and Kertesz, Vilmos. Utilizing the Inherent Electrolysis in a Chip-Based Nanoelectrospray Emitter System to Facilitate Selective Ionization and Mass Spectrometric Analysis of Metallo Alkylporphyrins. United States: N. p., 2012. Web. doi:10.1007/s00216-011-5676-x.
Van Berkel, Gary J, & Kertesz, Vilmos. Utilizing the Inherent Electrolysis in a Chip-Based Nanoelectrospray Emitter System to Facilitate Selective Ionization and Mass Spectrometric Analysis of Metallo Alkylporphyrins. United States. doi:10.1007/s00216-011-5676-x.
Van Berkel, Gary J, and Kertesz, Vilmos. 2012. "Utilizing the Inherent Electrolysis in a Chip-Based Nanoelectrospray Emitter System to Facilitate Selective Ionization and Mass Spectrometric Analysis of Metallo Alkylporphyrins". United States. doi:10.1007/s00216-011-5676-x.
@article{osti_1038803,
title = {Utilizing the Inherent Electrolysis in a Chip-Based Nanoelectrospray Emitter System to Facilitate Selective Ionization and Mass Spectrometric Analysis of Metallo Alkylporphyrins},
author = {Van Berkel, Gary J and Kertesz, Vilmos},
abstractNote = {A commercially available chip-based infusion nanoelectrospray ionization system was used to ionize metallo alkylporphyrins for mass spectrometric detection and structure elucidation by mass spectrometry. Different ionic forms of model compounds (nickel (II), vanadyl (II), copper (II) and cobalt (II) octaethylporphyrin) were created by using two different types of conductive pipette tips supplied with the device. These pipette tips provide the conductive contact to solution at which the electrolysis process inherent to electrospray takes places in the device. The original unmodified, bare carbon-impregnated plastic pipette tips, were exploited to intentionally electrochemically oxidize (ionize) the porphyrins to form molecular radical cations for detection. Use of modified pipette tips, with a surface coating devised to inhibit analyte mass transport to the surface, was shown to limit the ionic species observed in the mass spectra of these porphyrins largely, but not exclusively, to the protonated molecule. Under the conditions of these experiments, the effective upper potential limit for oxidation with the uncoated pipette tip was 1.1 V or less and the coated pipette tips effectively prevented the oxidation of analytes with redox potentials greater than about 0.25 V. Product ion spectra of either molecular ionic species could be used to determine the alkyl chain length on the porphyrin macrocycle. The utility of this electrochemical ionization approach for the analysis of naturally occurring samples was demonstrated using nickel geoporphyrin fractions isolated from Gilsonite bitumen. Acquiring neutral loss spectra as a means to improve the specificity of detection in these complex natural samples was also illustrated.},
doi = {10.1007/s00216-011-5676-x},
journal = {Analytical and Bioanalytical Chemistry},
number = 2,
volume = 403,
place = {United States},
year = 2012,
month = 1
}
  • An integrated poly(dimethylsiloxane) (PDMS) membrane-based microfluidic emitter for high performance nanoelectrospray ionization-mass spectrometry (nanoESI-MS) has been fabricated and evaluated. The ~100-μm-thick emitter was created by cutting a PDMS membrane that protrudes beyond the bulk substrate. The reduced surface area at the emitter enhances the electric field and reduces wetting of the surface by the electrospray solvent. As such, the emitter provides highly stable electrospray at flow rates as low as 10 nL/min, and is compatible with electrospray solvents containing a large organic component (e.g., 90% methanol). This approach enables facile emitter construction, and provides excellent stability, reproducibility and sensitivity, asmore » well as compatibility with multilayer soft lithography.« less
  • A fully automated liquid extraction-based surface sampling device utilizing an Advion NanoMate chip-based infusion nanoelectrospray ionization system is reported. Analyses were enabled for discrete spot sampling by using the Advanced User Interface of the current commercial control software. This software interface provided the parameter control necessary for the NanoMate robotic pipettor to both form and withdraw a liquid microjunction for sampling from a surface. The system was tested with three types of analytically important sample surface types, viz., spotted sample arrays on a MALDI plate, dried blood spots on paper, and whole-body thin tissue sections from drug dosed mice. Themore » qualitative and quantitative data were consistent with previous studies employing other liquid extraction-based surface sampling techniques. The successful analyses performed here utilized the hardware and software elements already present in the NanoMate system developed to handle and analyze liquid samples. Implementation of an appropriate sample (surface) holder, a solvent reservoir, faster movement of the robotic arm, finer control over solvent flow rate when dispensing and retrieving the solution at the surface, and the ability to select any location on a surface to sample from would improve the analytical performance and utility of the platform.« less
  • A new sheathless CITP/CZE-MS interface, based on a commercially available capillary with an integrated metal coated ESI emitter, was developed in this study aiming at overcoming the reproducibility and ruggedness problems, suffered to a certain degree by almost all the available CE-MS interfaces, and pushing the CE-MS technology suitable for routine sample analysis with high sensitivity. The new CITP/CZE-MS interface allows the electric contact between ESI voltage power supply and the CE separation liquid by using a conductive liquid that comes in contact with the metal coated surface of the ESI emitter, making it a true sheathless CE-MS interface. Stablemore » electrospray was established by avoiding the formation of gas bubbles from electro chemical reaction at the emitter tip or inside of the CE capillary. Crucial operating parameters, such as sample loading volume, flow rate, and separation voltage, were systematically evaluated for their effects on both CITP/CZE separation efficiency and MS detection sensitivity. Around one hundred CITP/CZE-MS analyses can be easily achieved by using the new sheathless CITP/CZE interface without a noticeable loss of metal coating on the ESI emitter surface, or degrading of the ESI emitter performance. The reproducibility in analyte migration time and quantitative performance of the new interface was experimentally evaluated to demonstrate a LOQ bellow 5 attomole.« less
  • A new analytical procedure was developed for the quantitation of nonsmoker salivary cotinine. Small volumes of saliva were diluted with water, fortified with cotinine-d{sub 3} (internal standard), then passed through small extraction columns. The analyte and internal standard were eluted with 0.1% (v/v) acetic acid/acetonitrile. Aliquots of each extract were analyzed directly, without chromatographic separation, using chip-based (NanoMate{sup TM}) nanospray tandem mass spectrometry. The calculated detection limit was 0.49 ng cotinine/mL saliva. This method was used to quantify salivary cotinine collected from nonsmoking human subjects living in one of three environmental tobacco smoke (ETS) exposure categories or 'cells': 1. smokingmore » home/smoking workplace; 2. smoking home/nonsmoking workplace; and 3. nonsmoking home/smoking workplace. Samples were collected during five sequential days, including Saturday, as part of a larger study to evaluate potential variability in exposure to ETS. Salivary cotinine measurements were made for the purpose of excluding misclassified smokers and for comparison with known levels of exposure to airborne nicotine in each exposure category. The concentrations observed were consistent with those reported from other large studies reported elsewhere. A non-parametric statistical test was applied to the data within each cell. No statistically significant differences were found between the mean cotinine concentrations collected on a weekday as compared to those collected on a weekend day. When the non-parametric test was applied to the three cells, a statistically significant difference was observed between cell 1 compared to cells 2 and 3. The salivary cotinine concentrations were thus statistically invariant over a five-day exposure period, and they were greatest under the conditions of smoking home and smoking workplace.« less
  • RATIONALE: Laser ablation provides for the possibility of sampling a large variety of surfaces with high spatial resolution. This type of sampling when employed in conjunction with liquid capture followed by nanoelectrospray ionization provides the opportunity for sensitive and prolonged interrogation of samples by mass spectrometry as well as the ability to analyze surfaces not amenable to direct liquid extraction. METHODS: A fully automated, reflection geometry, laser ablation liquid capture spot sampling system was achieved by incorporating appropriate laser fiber optics and a focusing lens into a commercially available, liquid extraction surface analysis (LESA ) ready Advion TriVersa NanoMate system.more » RESULTS: Under optimized conditions about 10% of laser ablated material could be captured in a droplet positioned vertically over the ablation region using the NanoMate robot controlled pipette. The sampling spot size area with this laser ablation liquid capture surface analysis (LA/LCSA) mode of operation (typically about 120 m x 160 m) was approximately 50 times smaller than that achievable by direct liquid extraction using LESA (ca. 1 mm diameter liquid extraction spot). The set-up was successfully applied for the analysis of ink on glass and paper as well as the endogenous components in Alstroemeria Yellow King flower petals. In a second mode of operation with a comparable sampling spot size, termed laser ablation/LESA , the laser system was used to drill through, penetrate, or otherwise expose material beneath a solvent resistant surface. Once drilled, LESA was effective in sampling soluble material exposed at that location on the surface. CONCLUSIONS: Incorporating the capability for different laser ablation liquid capture spot sampling modes of operation into a LESA ready Advion TriVersa NanoMate enhanced the spot sampling spatial resolution of this device and broadened the surface types amenable to analysis to include absorbent and solvent resistant materials.« less