skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Adiabatic capture and debunching

Abstract

In the study of beam preparation for the g-2 experiment, adiabatic debunching and adiabatic capture are revisited. The voltage programs for these adiabbatic processes are derived and their properties discussed. Comparison is made with some other form of adiabatic capture program. The muon g-2 experiment at Fermilab calls for intense proton bunches for the creation of muons. A booster batch of 84 bunches is injected into the Recycler Ring, where it is debunched and captured into 4 intense bunches with the 2.5-MHz rf. The experiment requires short bunches with total width less than 100 ns. The transport line from the Recycler to the muon-production target has a low momentum aperture of {approx} {+-}22 MeV. Thus each of the 4 intense proton bunches required to have an emittance less than {approx} 3.46 eVs. The incoming booster bunches have total emittance {approx} 8.4 eVs, or each one with an emittance {approx} 0.1 eVs. However, there is always emittance increase when the 84 booster bunches are debunched. There will be even larger emittance increase during adiabatic capture into the buckets of the 2.5-MHz rf. In addition, the incoming booster bunches may have emittances larger than 0.1 eVs. In this article, we will concentratemore » on the analysis of the adiabatic capture process with the intention of preserving the beam emittance as much as possible. At this moment, beam preparation experiment is being performed at the Main Injector. Since the Main Injector and the Recycler Ring have roughly the same lattice properties, we are referring to adiabatic capture in the Main Injector instead in our discussions.« less

Authors:
;
Publication Date:
Research Org.:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1038543
Report Number(s):
FERMILAB-FN-0943-APC
TRN: US1202015
DOE Contract Number:  
AC02-07CH11359
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; APERTURES; BEAM EMITTANCE; FERMILAB; MUONS; PROTONS; TARGETS; TRANSPORT; Accelerators

Citation Formats

Ng, K.Y., and /Fermilab. Adiabatic capture and debunching. United States: N. p., 2012. Web. doi:10.2172/1038543.
Ng, K.Y., & /Fermilab. Adiabatic capture and debunching. United States. doi:10.2172/1038543.
Ng, K.Y., and /Fermilab. Thu . "Adiabatic capture and debunching". United States. doi:10.2172/1038543. https://www.osti.gov/servlets/purl/1038543.
@article{osti_1038543,
title = {Adiabatic capture and debunching},
author = {Ng, K.Y. and /Fermilab},
abstractNote = {In the study of beam preparation for the g-2 experiment, adiabatic debunching and adiabatic capture are revisited. The voltage programs for these adiabbatic processes are derived and their properties discussed. Comparison is made with some other form of adiabatic capture program. The muon g-2 experiment at Fermilab calls for intense proton bunches for the creation of muons. A booster batch of 84 bunches is injected into the Recycler Ring, where it is debunched and captured into 4 intense bunches with the 2.5-MHz rf. The experiment requires short bunches with total width less than 100 ns. The transport line from the Recycler to the muon-production target has a low momentum aperture of {approx} {+-}22 MeV. Thus each of the 4 intense proton bunches required to have an emittance less than {approx} 3.46 eVs. The incoming booster bunches have total emittance {approx} 8.4 eVs, or each one with an emittance {approx} 0.1 eVs. However, there is always emittance increase when the 84 booster bunches are debunched. There will be even larger emittance increase during adiabatic capture into the buckets of the 2.5-MHz rf. In addition, the incoming booster bunches may have emittances larger than 0.1 eVs. In this article, we will concentrate on the analysis of the adiabatic capture process with the intention of preserving the beam emittance as much as possible. At this moment, beam preparation experiment is being performed at the Main Injector. Since the Main Injector and the Recycler Ring have roughly the same lattice properties, we are referring to adiabatic capture in the Main Injector instead in our discussions.},
doi = {10.2172/1038543},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Mar 01 00:00:00 EST 2012},
month = {Thu Mar 01 00:00:00 EST 2012}
}

Technical Report:

Save / Share: