skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Metal thin film growth on multimetallic surfaces: From quaternary metallic glass to binary crystal

Abstract

The work presented in this thesis mainly focuses on the nucleation and growth of metal thin films on multimetallic surfaces. First, we have investigated the Ag film growth on a bulk metallic glass surface. Next, we have examined the coarsening and decay of bilayer Ag islands on NiAl(110) surface. Third, we have investigated the Ag film growth on NiAl(110) surface using low-energy electron diffraction (LEED). At last, we have reported our investigation on the epitaxial growth of Ni on NiAl(110) surface. Some general conclusions can be drawn as follows. First, Ag, a bulk-crystalline material, initially forms a disordered wetting layer up to 4-5 monolayers on Zr-Ni-Cu-Al metallic glass. Above this coverage, crystalline 3D clusters grow, in parallel with the flatter regions. The cluster density increases with decreasing temperature, indicating that the conditions of island nucleation are far-from-equilibrium. Within a simple model where clusters nucleate whenever two mobile Ag adatoms meet, the temperature-dependence of cluster density yields a (reasonable) upper limit for the value of the Ag diffusion barrier on top of the Ag wetting layer of 0.32 eV. Overall, this prototypical study suggests that it is possible to grow films of a bulk-crystalline metal that adopt the amorphous character ofmore » a glassy metal substrate, if film thickness is sufficiently low. Next, the first study of coarsening and decay of bilayer islands has been presented. The system was Ag on NiAl(110) in the temperature range from 185 K to 250 K. The coarsening behavior, has some similarities to that seen in the Ag(110) homoepitaxial system studied by Morgenstern and co-workers. At 185 K and 205 K, coarsening of Ag islands follows a Smoluchowski ripening pathway. At 205 K and 250 K, the terrace diffusion limited Ostwald ripening dominants. The experimental observed temperature for the transition from SR to OR is 205 K. The SR exhibits anisotropic island diffusion and the OR exhibits 1D decay of island length while keeping the corresponding island width constant. Third, LEED indicates that, up to about 6 BL (12 ML), the Ag film adopts the (110) structure on lattice matched NiAl(110) surface, supporting the previous assignment based upon island heights measured in STM. Starting at 4.5 to 6 BL, (111) diffraction pattern is detected. This is also in agreement with previous STM study. Careful examinations of the LEED patterns reveal the slight difference in lattice constants between bulk Ag and bulk NiAl. At last, we performed STM studies of Ni deposition on NiAl(110) in the temperature range from 200 K to 400 K. Ni forms 'dense' Ni(100)-like islands on NiAl(110) with a zig-zag shaped stripe feature which is probably due to strain relief. DFT analysis provides insights into the island growth shapes, which are rationalized by the thermodynamics and kinetics of the film growth process. For thick Ni films (coverage exceeding 6 ML), a Ni(111)-like structure developed. Traditional MF theory is applied to analyze island density at 200 K. Deviation from homogeneous nucleation behavior for island size distribution and island density reveals the presence of heterogeneous nucleation mediated by the Ni antisite point defects on NiAl(110) surface.« less

Authors:
 [1]
  1. Iowa State Univ., Ames, IA (United States)
Publication Date:
Research Org.:
Ames Lab., Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1037881
Report Number(s):
IS-T 2780
TRN: US201208%%227
DOE Contract Number:  
AC02-07CH11358
Resource Type:
Thesis/Dissertation
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; DECAY; DEPOSITION; DIFFRACTION; DIFFUSION; DIFFUSION BARRIERS; DISTRIBUTION; ELECTRON DIFFRACTION; GLASS; KINETICS; METALLIC GLASSES; NUCLEATION; POINT DEFECTS; RIPENING; STRAINS; TEMPERATURE DEPENDENCE; THERMODYNAMICS; THICKNESS; THIN FILMS

Citation Formats

Jing, Dapeng. Metal thin film growth on multimetallic surfaces: From quaternary metallic glass to binary crystal. United States: N. p., 2010. Web. doi:10.2172/1037881.
Jing, Dapeng. Metal thin film growth on multimetallic surfaces: From quaternary metallic glass to binary crystal. United States. https://doi.org/10.2172/1037881
Jing, Dapeng. 2010. "Metal thin film growth on multimetallic surfaces: From quaternary metallic glass to binary crystal". United States. https://doi.org/10.2172/1037881. https://www.osti.gov/servlets/purl/1037881.
@article{osti_1037881,
title = {Metal thin film growth on multimetallic surfaces: From quaternary metallic glass to binary crystal},
author = {Jing, Dapeng},
abstractNote = {The work presented in this thesis mainly focuses on the nucleation and growth of metal thin films on multimetallic surfaces. First, we have investigated the Ag film growth on a bulk metallic glass surface. Next, we have examined the coarsening and decay of bilayer Ag islands on NiAl(110) surface. Third, we have investigated the Ag film growth on NiAl(110) surface using low-energy electron diffraction (LEED). At last, we have reported our investigation on the epitaxial growth of Ni on NiAl(110) surface. Some general conclusions can be drawn as follows. First, Ag, a bulk-crystalline material, initially forms a disordered wetting layer up to 4-5 monolayers on Zr-Ni-Cu-Al metallic glass. Above this coverage, crystalline 3D clusters grow, in parallel with the flatter regions. The cluster density increases with decreasing temperature, indicating that the conditions of island nucleation are far-from-equilibrium. Within a simple model where clusters nucleate whenever two mobile Ag adatoms meet, the temperature-dependence of cluster density yields a (reasonable) upper limit for the value of the Ag diffusion barrier on top of the Ag wetting layer of 0.32 eV. Overall, this prototypical study suggests that it is possible to grow films of a bulk-crystalline metal that adopt the amorphous character of a glassy metal substrate, if film thickness is sufficiently low. Next, the first study of coarsening and decay of bilayer islands has been presented. The system was Ag on NiAl(110) in the temperature range from 185 K to 250 K. The coarsening behavior, has some similarities to that seen in the Ag(110) homoepitaxial system studied by Morgenstern and co-workers. At 185 K and 205 K, coarsening of Ag islands follows a Smoluchowski ripening pathway. At 205 K and 250 K, the terrace diffusion limited Ostwald ripening dominants. The experimental observed temperature for the transition from SR to OR is 205 K. The SR exhibits anisotropic island diffusion and the OR exhibits 1D decay of island length while keeping the corresponding island width constant. Third, LEED indicates that, up to about 6 BL (12 ML), the Ag film adopts the (110) structure on lattice matched NiAl(110) surface, supporting the previous assignment based upon island heights measured in STM. Starting at 4.5 to 6 BL, (111) diffraction pattern is detected. This is also in agreement with previous STM study. Careful examinations of the LEED patterns reveal the slight difference in lattice constants between bulk Ag and bulk NiAl. At last, we performed STM studies of Ni deposition on NiAl(110) in the temperature range from 200 K to 400 K. Ni forms 'dense' Ni(100)-like islands on NiAl(110) with a zig-zag shaped stripe feature which is probably due to strain relief. DFT analysis provides insights into the island growth shapes, which are rationalized by the thermodynamics and kinetics of the film growth process. For thick Ni films (coverage exceeding 6 ML), a Ni(111)-like structure developed. Traditional MF theory is applied to analyze island density at 200 K. Deviation from homogeneous nucleation behavior for island size distribution and island density reveals the presence of heterogeneous nucleation mediated by the Ni antisite point defects on NiAl(110) surface.},
doi = {10.2172/1037881},
url = {https://www.osti.gov/biblio/1037881}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Jan 01 00:00:00 EST 2010},
month = {Fri Jan 01 00:00:00 EST 2010}
}

Thesis/Dissertation:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this thesis or dissertation.

Save / Share: