skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Combustion, Control, and Fuel Effects in a Spark Assisted HCCI Engine Equipped with Variable Valve Timing

Abstract

Widespread implementation of homogeneous charge compression ignition (HCCI) engines is presently hindered by stability, control, and load range issues. Although the operable HCCI speed/load range is expanding, it is likely that the initial HCCI engines will rely on conventional combustion for part of the operating cycle. In the present study, we have investigated the role of fuel properties and chemistry on the operation of a spark-assisted gasoline HCCI engine. The engine employed is a single cylinder, 500 cc, port fuel injected research engine, operating near lambda = 1.0 and equipped with hydraulic variable valve actuation. HCCI is initiated by early exhaust valve closing to retain exhaust in the cylinder, thereby increasing the cylinder gas temperature. This is also referred to as a 'negative overlap' strategy. A total of 10 custom blended gasolines and three different batches of indolene from two suppliers were run at 5 speed-load combinations and performance was characterized by timing sweeps. Within the quality of the data set, we can say the all fuels provided equivalent combustion and performance characteristics when compared at the same combustion phasing. The fuels did, however, require different degrees of retained exhaust as measured by exhaust valve closing angle to achieve themore » same combustion phasing. Fuels with higher octane sensitivity were found to ignite more easily or more quickly and to burn more quickly than fuels with lower octane sensitivity. This is an expected result since the engine is naturally aspirated and operates with high compression temperatures due to the high retained exhaust fraction and recompression.« less

Authors:
 [1]
  1. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1036163
DOE Contract Number:
DE-AC05-00OR22725
Resource Type:
Conference
Resource Relation:
Conference: 2006 SAE International Congress and Exposition, Detroit, MI, USA, 20060402, 20060406
Country of Publication:
United States
Language:
English
Subject:
02 PETROLEUM; CHEMISTRY; COMBUSTION; COMPRESSION; ENGINES; GASOLINE; HYDRAULICS; IGNITION; IMPLEMENTATION; OCTANE; PERFORMANCE; SENSITIVITY; STABILITY; VALVES; 2006-01-0872

Citation Formats

Bunting, Bruce G. Combustion, Control, and Fuel Effects in a Spark Assisted HCCI Engine Equipped with Variable Valve Timing. United States: N. p., 2006. Web.
Bunting, Bruce G. Combustion, Control, and Fuel Effects in a Spark Assisted HCCI Engine Equipped with Variable Valve Timing. United States.
Bunting, Bruce G. Sun . "Combustion, Control, and Fuel Effects in a Spark Assisted HCCI Engine Equipped with Variable Valve Timing". United States. doi:.
@article{osti_1036163,
title = {Combustion, Control, and Fuel Effects in a Spark Assisted HCCI Engine Equipped with Variable Valve Timing},
author = {Bunting, Bruce G},
abstractNote = {Widespread implementation of homogeneous charge compression ignition (HCCI) engines is presently hindered by stability, control, and load range issues. Although the operable HCCI speed/load range is expanding, it is likely that the initial HCCI engines will rely on conventional combustion for part of the operating cycle. In the present study, we have investigated the role of fuel properties and chemistry on the operation of a spark-assisted gasoline HCCI engine. The engine employed is a single cylinder, 500 cc, port fuel injected research engine, operating near lambda = 1.0 and equipped with hydraulic variable valve actuation. HCCI is initiated by early exhaust valve closing to retain exhaust in the cylinder, thereby increasing the cylinder gas temperature. This is also referred to as a 'negative overlap' strategy. A total of 10 custom blended gasolines and three different batches of indolene from two suppliers were run at 5 speed-load combinations and performance was characterized by timing sweeps. Within the quality of the data set, we can say the all fuels provided equivalent combustion and performance characteristics when compared at the same combustion phasing. The fuels did, however, require different degrees of retained exhaust as measured by exhaust valve closing angle to achieve the same combustion phasing. Fuels with higher octane sensitivity were found to ignite more easily or more quickly and to burn more quickly than fuels with lower octane sensitivity. This is an expected result since the engine is naturally aspirated and operates with high compression temperatures due to the high retained exhaust fraction and recompression.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Jan 01 00:00:00 EST 2006},
month = {Sun Jan 01 00:00:00 EST 2006}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The characteristics of fuel lean HCCI operation using a variety of fuels are well known and have been demonstrated using different engine concepts in the past. In contrast, stoichiometric operation of HCCI is less well documented. Recent studies have highlighted the benefits of operating at a stoichiometric condition in terms of load expansion combined with the applicability of three way catalyst technology to reduce NOx emissions. In this study the characterization of stoichiometric HCCI using gasoline-like fuels was undertaken. The fuels investigated are gasoline, a 50 vol% blend of iso-butanol and gasoline (IB50), and an 85% vol blend of ethanolmore » and gasoline (E85). A single cylinder engine operating with direct injection and spark assist combined with a fully variable hydraulic valve actuation system allowed a wide range of operating parameters to be studied. This included the effects of negative valve overlap duration, intake valve closing and valve lift. Furthermore, the interaction between fuel injection timing and spark and how they can affect the required valve timing to achieve stoichiometric HCCI combustion are also studied. A comprehensive combustion and emissions analysis is conducted using gasoline, IB50 and E85 at an engine speed of 2000rpm over a range of operating loads. The resultant fuel properties which differed in terms of octane rating, fuel oxygenation and heat of vaporization show that stoichiometric HCCI is possible using a range of fuels but that these fuel characteristics do have some effect on the combustion characteristics. How these fuel properties can enable an increased engine operating envelope to be achieved, in comparison with both fuel lean HCCI and conventional spark ignited combustion, is then discussed.« less
  • The effects of fuel properties on gasoline HCCI operation have been investigated in a single cylinder, 500 cc, 11.3 CR port fuel injected research engine, operated at lambda=1 and equipped with hydraulic valve actuation. HCCI is promoted by early exhaust valve closing to retain hot exhaust in the cylinder, thereby increasing the cylinder gas temperature. Test fuels were formulated with pure components to have the same RON, MON, and octane sensitivity as an indolene reference fuel, but with a wide range of fuel composition differences. Experiments have been carried out to determine if fuel composition plays a role in HCCImore » combustion properties, independent of octane numbers. Fuel economy, emissions, and combustion parameters have been measured at several fixed speed/load conditions over a range of exhaust valve closing angles. When the data are compared at constant combustion phasing, fuel effects on emissions and other combustion properties are small. However, when compared at constant exhaust valve closing angle, fuel composition effects are more pronounced, specifically regarding ignition. Operability range differences are also related to fuel composition. An all-paraffinic (normal, iso, and cycloparaffins) fuel exhibited distinctly earlier combustion phasing, increased rate of cylinder pressure rise, and increased rate of maximum heat release compared to the indolene reference fuel. Conversely, olefin-containing fuels exhibited retarded combustion phasing. The fuels with the most advanced ignition showed a wider operating range in terms of engine speed and load, irrespective of exhaust closing angle. These ignition differences reflect contributions from both fuel and EGR kinetics, the effects of which are discussed. The fuel composition variables are somewhat inter-correlated, which makes the experimental separation their effects imprecise with this small set of fuels, though clear trends are evident. The overall effects of fuel composition on engine performance and emissions are small. However, the results suggest that the effects on combustion phasing and engine operability range may need to be considered in the practical implementation of HCCI for fuels with large compositional variations.« less
  • In recent years a number of studies have demonstrated that boosted operation combined with external EGR is a path forward for expanding the high load limit of homogeneous charge compression ignition (HCCI) operation with the negative valve overlap (NVO) valve strategy. However, the effects of fuel composition with this strategy have not been fully explored. In this study boosted HCCI combustion is investigated in a single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), laboratory pressurized intake air, and a fully-variable hydraulic valve actuation (HVA) valve train. Three fuels with significant compositional differences aremore » investigated: regular grade gasoline (RON = 90.2), 30% ethanol-gasoline blend (E30, RON = 100.3), and 24% iso-butanol-gasoline blend (IB24, RON = 96.6). Results include engine loads from 350 to 800 kPa IMEPg for all fuels at three engine speeds 1600, 2000, and 2500 rpm. All operating conditions achieved thermal efficiency (gross indicated efficiency) between 38 and 47%, low NOX emissions ( 0.1 g/kWh), and high combustion efficiency ( 96.5%). Detailed sweeps of intake manifold pressure (atmospheric to 250 kPaa), EGR (0 25% EGR), and injection timing are conducted to identify fuel-specific effects. The major finding of this study is that while significant fuel compositional differences exist, in boosted HCCI operation only minor changes in operational conditions are required to achieve comparable operation for all fuels. In boosted HCCI operation all fuels were able to achieve matched load-speed operation, whereas in conventional SI operation the fuel-specific knock differences resulted in significant differences in the operable load-speed space. Although all fuels were operable in boosted HCCI, the respective air handling requirements are also discussed, including an analysis of the demanded turbocharger efficiency.« less
  • When pumping loss is reduced by controlling intake-valve closing timing, an improvement in fuel economy equivalent to the reduction in pumping loss is not obtained. The major contributing factor to this phenomenon is the deterioration of the combustion, namely, increase in combustion duration and in combustion fluctuation. Therefore, an analysis is conducted on how the various factors which influence the combustion, such as the gas temperature, pressure and residual gas fraction in the cylinder during the compression stroke, change when the intake-valve closing timing is modified. As a result of experiments and simulation based on computations, it is found thatmore » the principal cause of the combustion deterioration is the drop in cylinder gas temperature and pressure which is traced to a decrease in the effective compression ratio.« less
  • Two fundamental methods of improving the brake specific fuel consumption of a spark ignition engine at part load have been investigated. These comprise the reduction of pumping losses by variable intake valve timing and changes of clearance volume to increase the expansion ratio. The resulting Otto-Atkinson cycle engine competes with the Diesel cycle engine. Test bed results from a four cylinder engine are reported which largely confirm previous predictions from thermodynamic cycle simulation. The interactive effects between cylinders on pumping loss and mixture requirements are discussed.