skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis and characterization of inorganic silicon oxycarbide glass thin films by reactive rf-magnetron sputtering

Abstract

Silicon oxycarbide glasses have been of interest because of the potential range of properties they might exhibit through a change in carbon-to-oxygen ratio. They are metastable materials and, as such, their structures and properties are very dependent upon the synthesis method. Silicon oxycarbide bonding has been seen in materials made by melting, oxidation, polycarbosilane or sol/gel pyrolysis, and chemical vapor deposition. In this work, the radio-frequency reactive sputtering of silicon carbide targets was explored for synthesis of amorphous silicon oxycarbide thin films. SiO (2-2x) C x films, with a continuous range of compositions where 0≤x≤1, were deposited by controlling the amount of oxygen present in the plasma with a SiC target. This resulted in a density range from 1.9 to 2.8 g/cm 3 and a range of refractive indexes from 1.35 to 2.85. Analysis of the film compositions, structures, and properties were performed using x-ray photoelectron spectroscopy, infrared spectroscopy, nuclear magnetic resonance, profilometry, electron microscopy, grazing incidence x-ray reflectivity, and UV-visible transmission and reflection. The compositional range obtainable by this rf sputtering method is much wider than that of other synthesis methods. It is shown here that for oxygen-to-carbon ratios between *0.10 and 10.0, silicon oxycarbide bonding comprises 55%-95% ofmore » the material structure. These sputter-deposited materials were also found to have significantly less free carbon as compared to those produced by other methods. Thus, the unique properties for these novel oxycarbide materials can now be established.« less

Authors:
;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1035010
Report Number(s):
PNNL-SA-85374
Journal ID: ISSN 0734-2101; JVTAD6
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films; Journal Volume: 25; Journal Issue: 1
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Ryan, Joseph V., and Pantano, C. G. Synthesis and characterization of inorganic silicon oxycarbide glass thin films by reactive rf-magnetron sputtering. United States: N. p., 2007. Web. doi:10.1116/1.2404688.
Ryan, Joseph V., & Pantano, C. G. Synthesis and characterization of inorganic silicon oxycarbide glass thin films by reactive rf-magnetron sputtering. United States. doi:10.1116/1.2404688.
Ryan, Joseph V., and Pantano, C. G. Mon . "Synthesis and characterization of inorganic silicon oxycarbide glass thin films by reactive rf-magnetron sputtering". United States. doi:10.1116/1.2404688.
@article{osti_1035010,
title = {Synthesis and characterization of inorganic silicon oxycarbide glass thin films by reactive rf-magnetron sputtering},
author = {Ryan, Joseph V. and Pantano, C. G.},
abstractNote = {Silicon oxycarbide glasses have been of interest because of the potential range of properties they might exhibit through a change in carbon-to-oxygen ratio. They are metastable materials and, as such, their structures and properties are very dependent upon the synthesis method. Silicon oxycarbide bonding has been seen in materials made by melting, oxidation, polycarbosilane or sol/gel pyrolysis, and chemical vapor deposition. In this work, the radio-frequency reactive sputtering of silicon carbide targets was explored for synthesis of amorphous silicon oxycarbide thin films. SiO (2-2x) Cx films, with a continuous range of compositions where 0≤x≤1, were deposited by controlling the amount of oxygen present in the plasma with a SiC target. This resulted in a density range from 1.9 to 2.8 g/cm3 and a range of refractive indexes from 1.35 to 2.85. Analysis of the film compositions, structures, and properties were performed using x-ray photoelectron spectroscopy, infrared spectroscopy, nuclear magnetic resonance, profilometry, electron microscopy, grazing incidence x-ray reflectivity, and UV-visible transmission and reflection. The compositional range obtainable by this rf sputtering method is much wider than that of other synthesis methods. It is shown here that for oxygen-to-carbon ratios between *0.10 and 10.0, silicon oxycarbide bonding comprises 55%-95% of the material structure. These sputter-deposited materials were also found to have significantly less free carbon as compared to those produced by other methods. Thus, the unique properties for these novel oxycarbide materials can now be established.},
doi = {10.1116/1.2404688},
journal = {Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films},
number = 1,
volume = 25,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}
  • Silicon oxycarbide glasses have been of interest because of the potential range of properties they might exhibit through a change in carbon-to-oxygen ratio. They are metastable materials and, as such, their structures and properties are very dependent upon the synthesis method. Silicon oxycarbide bonding has been seen in materials made by melting, oxidation, polycarbosilane or sol/gel pyrolysis, and chemical vapor deposition. In this work, the radio-frequency reactive sputtering of silicon carbide targets was explored for synthesis of amorphous silicon oxycarbide thin films. SiO{sub (2-2x)}C{sub x} films, with a continuous range of compositions where 0{<=}x{<=}1, were deposited by controlling the amountmore » of oxygen present in the plasma with a SiC target. This resulted in a density range from 1.9 to 2.8 g/cm{sup 3} and a range of refractive indexes from 1.35 to 2.85. Analysis of the film compositions, structures, and properties were performed using x-ray photoelectron spectroscopy, infrared spectroscopy, nuclear magnetic resonance, profilometry, electron microscopy, grazing incidence x-ray reflectivity, and UV-visible transmission and reflection. The compositional range obtainable by this rf sputtering method is much wider than that of other synthesis methods. It is shown here that for oxygen-to-carbon ratios between {approx}0.10 and 10.0, silicon oxycarbide bonding comprises 55%-95% of the material structure. These sputter-deposited materials were also found to have significantly less free carbon as compared to those produced by other methods. Thus, the unique properties for these novel oxycarbide materials can now be established.« less
  • Highlights: ► High-quality ZnO thin films were deposited at room temperature. ► Effect of O{sub 2} flow and RF sputtering voltages on properties of ZnO films were studied. ► O{sub 2}/Ar ratios played a key role in controlling optical properties of ZnO films. ► Photoluminescence intensity of the ZnO films strongly depended on O{sub 2}/Ar ratios. ► Crystallite size, stress and strain strongly depended on O{sub 2}/Ar ratios. - Abstract: ZnO thin films were deposited onto quartz substrates by radio frequency (RF) reactive magnetron sputtering using a Zn target. The structural and optical properties of the ZnO thin films weremore » investigated comprehensively by X-ray diffraction (XRD), ultraviolet–visible and photoluminescence (PL) measurements. The effects of the oxygen content of the total oxygen–argon mixture and sputtering voltage in the sputtering process on the structural and optical properties of the ZnO films were studied systemically. The microstructural parameters, such as the lattice constant, crystallite size, stress and strain, were also calculated and correlated with the structural and optical properties of the ZnO films. In addition, the results showed that the crystalline quality of ZnO thin films improved with increasing O{sub 2}/Ar gas flow ratio from 2:8 to 8:2. XRD and PL spectroscopy revealed 800 V to be the most appropriate sputtering voltage for ZnO thin film growth. High-quality ZnO films with a good crystalline structure, tunable optical band gap as well as high transmittance could be fabricated easily by RF reactive magnetron sputtering, paving the way to obtaining cost-effective ZnO thin films transparent conducting oxides for optoelectronics applications.« less
  • The synthesis of thin films of manganite materials was achieved using rf magnetron reactive sputtering. The nanostructure of these materials plays a key role in the giant magnetoresistance (GMR) properties of the material. 22 refs., 11 figs., 1 tab.
  • Reactive sputtering by high power impulse magnetron sputtering (HiPIMS) and direct current magnetron sputtering (DCMS) of a Zr target in Ar/H{sub 2} plasmas was employed to deposit Zr-H films on Si(100) substrates, and with H content up to 61 at. % and O contents typically below 0.2 at. % as determined by elastic recoil detection analysis. X-ray photoelectron spectroscopy reveals a chemical shift of ∼0.7 eV to higher binding energies for the Zr-H films compared to pure Zr films, consistent with a charge transfer from Zr to H in a zirconium hydride. X-ray diffraction shows that the films are single-phase δ-ZrH{sub 2} (CaF{submore » 2} type structure) at H content >∼55 at. % and pole figure measurements give a 111 preferred orientation for these films. Scanning electron microscopy cross-section images show a glasslike microstructure for the HiPIMS films, while the DCMS films are columnar. Nanoindentation yield hardness values of 5.5–7 GPa for the δ-ZrH{sub 2} films that is slightly harder than the ∼5 GPa determined for Zr films and with coefficients of friction in the range of 0.12–0.18 to compare with the range of 0.4–0.6 obtained for Zr films. Wear resistance testing show that phase-pure δ-ZrH{sub 2} films deposited by HiPIMS exhibit up to 50 times lower wear rate compared to those containing a secondary Zr phase. Four-point probe measurements give resistivity values in the range of ∼100–120 μΩ cm for the δ-ZrH{sub 2} films, which is slightly higher compared to Zr films with values in the range 70–80 μΩ cm.« less
  • The crystallization properties of amorphous silicon (a-Si) thin film deposited by rf magnetron sputter deposition with substrate bias have been thoroughly characterized. The crystallization kinetics for films deposited with substrate bias is enhanced relative to unbiased a-Si by films. The enhanced crystallization for substrate biased a-Si films are attributed to ion enhanced nucleation of crystallites during sputter deposition which subsequently grow during the postdeposition anneal. Conversely films sputter deposited without substrate bias have more intrinsic defects and residual oxygen which enhance nucleation and retard growth, respectively, and lead to a large number of small crystallites.