skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Theory of Nanoparticle Diffusion in Unentangled and Entangled Polymer Melts.

Abstract

We propose a statistical dynamical theory for the violation of the hydrodynamic Stokes-Einstein (SE) diffusion law for a spherical nanoparticle in entangled and unentangled polymer melts based on a combination of mode coupling, Brownian motion, and polymer physics ideas. The non-hydrodynamic friction coefficient is related to microscopic equilibrium structure and the length-scale-dependent polymer melt collective density fluctuation relaxation time. When local packing correlations are neglected, analytic scaling laws (with numerical prefactors) in various regimes are derived for the non-hydrodynamic diffusivity as a function of particle size, polymer radius-of-gyration, tube diameter, degree of entanglement, melt density, and temperature. Entanglement effects are the origin of large SE violations (orders of magnitude mobility enhancement) which smoothly increase as the ratio of particle radius to tube diameter decreases. Various crossover conditions for the recovery of the SE law are derived, which are qualitatively distinct for unentangled and entangled melts. The dynamical influence of packing correlations due to both repulsive and interfacial attractive forces is investigated. A central finding is that melt packing fraction, temperature, and interfacial attraction strength all influence the SE violation in qualitatively different directions depending on whether the polymers are entangled or not. Entangled systems exhibit seemingly anomalous trends as amore » function of these variables as a consequence of the non-diffusive nature of collective density fluctuation relaxation and the different response of polymer-particle structural correlations to adsorption on the mesoscopic entanglement length scale. The theory is in surprisingly good agreement with recent melt experiments, and new parametric studies are suggested.« less

Authors:
 [1];  [1]
  1. University of Illinois
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1034709
DOE Contract Number:  
AC05-00OR22725
Resource Type:
Journal Article
Journal Name:
The Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 135; Journal Issue: n/a; Journal ID: ISSN 0021-9606
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ADSORPTION; DIFFUSION; FLUCTUATIONS; FRICTION; HYDRODYNAMICS; PARTICLE SIZE; PHYSICS; POLYMERS; RELAXATION; RELAXATION TIME; SCALING LAWS

Citation Formats

Yamamoto, U., and Schweizer, Kenneth. Theory of Nanoparticle Diffusion in Unentangled and Entangled Polymer Melts.. United States: N. p., 2011. Web. doi:10.1063/1.3664863.
Yamamoto, U., & Schweizer, Kenneth. Theory of Nanoparticle Diffusion in Unentangled and Entangled Polymer Melts.. United States. doi:10.1063/1.3664863.
Yamamoto, U., and Schweizer, Kenneth. Sat . "Theory of Nanoparticle Diffusion in Unentangled and Entangled Polymer Melts.". United States. doi:10.1063/1.3664863.
@article{osti_1034709,
title = {Theory of Nanoparticle Diffusion in Unentangled and Entangled Polymer Melts.},
author = {Yamamoto, U. and Schweizer, Kenneth},
abstractNote = {We propose a statistical dynamical theory for the violation of the hydrodynamic Stokes-Einstein (SE) diffusion law for a spherical nanoparticle in entangled and unentangled polymer melts based on a combination of mode coupling, Brownian motion, and polymer physics ideas. The non-hydrodynamic friction coefficient is related to microscopic equilibrium structure and the length-scale-dependent polymer melt collective density fluctuation relaxation time. When local packing correlations are neglected, analytic scaling laws (with numerical prefactors) in various regimes are derived for the non-hydrodynamic diffusivity as a function of particle size, polymer radius-of-gyration, tube diameter, degree of entanglement, melt density, and temperature. Entanglement effects are the origin of large SE violations (orders of magnitude mobility enhancement) which smoothly increase as the ratio of particle radius to tube diameter decreases. Various crossover conditions for the recovery of the SE law are derived, which are qualitatively distinct for unentangled and entangled melts. The dynamical influence of packing correlations due to both repulsive and interfacial attractive forces is investigated. A central finding is that melt packing fraction, temperature, and interfacial attraction strength all influence the SE violation in qualitatively different directions depending on whether the polymers are entangled or not. Entangled systems exhibit seemingly anomalous trends as a function of these variables as a consequence of the non-diffusive nature of collective density fluctuation relaxation and the different response of polymer-particle structural correlations to adsorption on the mesoscopic entanglement length scale. The theory is in surprisingly good agreement with recent melt experiments, and new parametric studies are suggested.},
doi = {10.1063/1.3664863},
journal = {The Journal of Chemical Physics},
issn = {0021-9606},
number = n/a,
volume = 135,
place = {United States},
year = {2011},
month = {1}
}

Works referenced in this record:

Molecular theories of polymer nanocomposites
journal, April 2010

  • Hall, Lisa M.; Jayaraman, Arthi; Schweizer, Kenneth S.
  • Current Opinion in Solid State and Materials Science, Vol. 14, Issue 2
  • DOI: 10.1016/j.cossms.2009.08.004

Breakdown of the Continuum Stokes−Einstein Relation for Nanoparticle Diffusion
journal, May 2007

  • Tuteja, Anish; Mackay, Michael E.; Narayanan, Suresh
  • Nano Letters, Vol. 7, Issue 5
  • DOI: 10.1021/nl070192x

Molecular Simulation of Ultrathin Polymeric Films near the Glass Transition
journal, October 2000


Microscopic Constitutive Equation Theory for the Nonlinear Mechanical Response of Polymer Glasses
journal, August 2008

  • Chen, Kang; Schweizer, Kenneth S.
  • Macromolecules, Vol. 41, Issue 15
  • DOI: 10.1021/ma800778v

Macromolecular crowding: an important but neglected aspect of the intracellular environment
journal, February 2001


Dynamical correlation function of polymer density fluctuations in concentrated solutions
journal, July 1990


General Strategies for Nanoparticle Dispersion
journal, March 2006


Connection between Polymer Molecular Weight, Density, Chain Dimensions, and Melt Viscoelastic Properties
journal, August 1994

  • Fetters, L. J.; Lohse, D. J.; Richter, D.
  • Macromolecules, Vol. 27, Issue 17
  • DOI: 10.1021/ma00095a001

Connections between some kinetic and equilibrium theories of the glass transition
journal, April 1987


Origins of Linear Viscoelastic Behavior of Polymer−Nanoparticle Composites
journal, January 2006

  • Pryamitsyn, Victor; Ganesan, Venkat
  • Macromolecules, Vol. 39, Issue 2
  • DOI: 10.1021/ma051841z

Noncontinuum effects in nanoparticle dynamics in polymers
journal, June 2006

  • Ganesan, Venkat; Pryamitsyn, Victor; Surve, Megha
  • The Journal of Chemical Physics, Vol. 124, Issue 22
  • DOI: 10.1063/1.2209241

Nanoscale effects leading to non-Einstein-like decrease in viscosity
journal, October 2003

  • Mackay, Michael E.; Dao, Tien T.; Tuteja, Anish
  • Nature Materials, Vol. 2, Issue 11
  • DOI: 10.1038/nmat999

Dynamics of gold nanoparticles in a polymer melt
journal, January 2009

  • Grabowski, Christopher A.; Adhikary, Bijoy; Mukhopadhyay, Ashis
  • Applied Physics Letters, Vol. 94, Issue 2
  • DOI: 10.1063/1.3070533

Collisions, caging, thermodynamics, and jamming in the barrier hopping theory of glassy hard sphere fluids
journal, October 2007

  • Schweizer, Kenneth S.; Yatsenko, Galina
  • The Journal of Chemical Physics, Vol. 127, Issue 16
  • DOI: 10.1063/1.2780861

Theory of coupled translational-rotational glassy dynamics in dense fluids of uniaxial particles
journal, July 2009


Viscosity at small scales in polymer melts
journal, January 2000

  • Brochard Wyart, F.; de Gennes, P. G.
  • The European Physical Journal E - Soft Matter, Vol. 1, Issue 1
  • DOI: 10.1007/s101890050011

Frequency spectrum and dynamic correlations of concentrated polymer liquids
journal, July 1983

  • Ronca, G.
  • The Journal of Chemical Physics, Vol. 79, Issue 2
  • DOI: 10.1063/1.445845

Many body effects on the phase separation and structure of dense polymer-particle melts
journal, June 2008

  • Hall, Lisa M.; Schweizer, Kenneth S.
  • The Journal of Chemical Physics, Vol. 128, Issue 23
  • DOI: 10.1063/1.2938379

Entropic barriers, activated hopping, and the glass transition in colloidal suspensions
journal, July 2003

  • Schweizer, Kenneth S.; Saltzman, Erica J.
  • The Journal of Chemical Physics, Vol. 119, Issue 2
  • DOI: 10.1063/1.1578632

Computer simulation and mode coupling theory study of the effects of specific solute–solvent interactions on diffusion: Crossover from a sub-slip to a super-stick limit of diffusion
journal, March 1999

  • Srinivas, Groundla; Bhattacharyya, Sarika; Bagchi, Biman
  • The Journal of Chemical Physics, Vol. 110, Issue 9
  • DOI: 10.1063/1.478292

Dynamic form function of a long polymer constrained by entanglements in a polymer melt
journal, July 1993


Contact Aggregation, Bridging, and Steric Stabilization in Dense Polymer−Particle Mixtures
journal, October 2005

  • Hooper, Justin B.; Schweizer, Kenneth S.
  • Macromolecules, Vol. 38, Issue 21
  • DOI: 10.1021/ma051318k

Dynamics of Probe Diffusion in Rod Solutions
journal, March 2008


Screening of hydrodynamic interactions in Brownian rod suspensions
journal, April 2008

  • Pryamitsyn, Victor; Ganesan, Venkat
  • The Journal of Chemical Physics, Vol. 128, Issue 13
  • DOI: 10.1063/1.2842075

Mode‐coupling theory of the dynamics of polymer liquids: Qualitative predictions for flexible chain and ring melts
journal, November 1989

  • Schweizer, Kenneth S.
  • The Journal of Chemical Physics, Vol. 91, Issue 9
  • DOI: 10.1063/1.457534

Density fluctuation correlation length in polymer fluids
journal, October 2003

  • Koshy, R.; Desai, T.; Keblinski, P.
  • The Journal of Chemical Physics, Vol. 119, Issue 14
  • DOI: 10.1063/1.1606673

Macromolecular Crowding: Biochemical, Biophysical, and Physiological Consequences
journal, June 1993


Structure, surface excess and effective interactions in polymer nanocomposite melts and concentrated solutions
journal, October 2004

  • Hooper, J. B.; Schweizer, K. S.; Desai, T. G.
  • The Journal of Chemical Physics, Vol. 121, Issue 14
  • DOI: 10.1063/1.1790831

Collective Diffusion in Polymer Solutions
journal, June 1994


Concentration dependence of equilibrium chain properties in dilute polymer solutions
journal, November 1983


Coherent scattering by one reptating chain
journal, January 1981


Mobility of Nonsticky Nanoparticles in Polymer Liquids
journal, October 2011

  • Cai, Li-Heng; Panyukov, Sergey; Rubinstein, Michael
  • Macromolecules, Vol. 44, Issue 19
  • DOI: 10.1021/ma201583q

Self-consistent mode-coupling theory for the viscosity of rodlike polyelectrolyte solutions
journal, January 2004

  • Miyazaki, Kunimasa; Bagchi, Biman; Yethiraj, Arun
  • The Journal of Chemical Physics, Vol. 121, Issue 16
  • DOI: 10.1063/1.1797193

Scale-free center-of-mass displacement correlations in polymer melts without topological constraints and momentum conservation: A bond-fluctuation model study
journal, June 2011

  • Wittmer, J. P.; Polińska, P.; Meyer, H.
  • The Journal of Chemical Physics, Vol. 134, Issue 23
  • DOI: 10.1063/1.3601918

Theory of dynamic barriers, activated hopping, and the glass transition in polymer melts
journal, July 2004

  • Schweizer, Kenneth S.; Saltzman, Erica J.
  • The Journal of Chemical Physics, Vol. 121, Issue 4
  • DOI: 10.1063/1.1756854

Conjectures on the glass transition of polymers in confined geometries
journal, June 2002

  • McCoy, John D.; Curro, John G.
  • The Journal of Chemical Physics, Vol. 116, Issue 21
  • DOI: 10.1063/1.1481379

Bending Dynamics of Fluctuating Biopolymers Probed by Automated High-Resolution Filament Tracking
journal, July 2007


Molecular Underpinnings of the Mechanical Reinforcement in Polymer Nanocomposites
journal, May 2007

  • Sen, Suchira; Thomin, James D.; Kumar, Sanat K.
  • Macromolecules, Vol. 40, Issue 11
  • DOI: 10.1021/ma070512z

Anomalous nanoparticle diffusion in polymer solutions and melts: A mode-coupling theory study
journal, February 2011

  • Egorov, S. A.
  • The Journal of Chemical Physics, Vol. 134, Issue 8
  • DOI: 10.1063/1.3556749

Dynamic coupling between stress and composition in polymer solutions and blends
journal, August 1992


Derivation of a microscopic theory of barriers and activated hopping transport in glassy liquids and suspensions
journal, December 2005

  • Schweizer, Kenneth S.
  • The Journal of Chemical Physics, Vol. 123, Issue 24
  • DOI: 10.1063/1.2137701

Molecular Dynamics Study on Nanoparticle Diffusion in Polymer Melts:  A Test of the Stokes−Einstein Law
journal, May 2008

  • Liu, Jun; Cao, Dapeng; Zhang, Liqun
  • The Journal of Physical Chemistry C, Vol. 112, Issue 17
  • DOI: 10.1021/jp800474t

Nanoparticle Polymer Composites: Where Two Small Worlds Meet
journal, November 2006

  • Balazs, A. C.; Emrick, T.; Russell, T. P.
  • Science, Vol. 314, Issue 5802, p. 1107-1110
  • DOI: 10.1126/science.1130557

Polymer induced depletion potentials in polymer-colloid mixtures
journal, July 2002

  • Louis, A. A.; Bolhuis, P. G.; Meijer, E. J.
  • The Journal of Chemical Physics, Vol. 117, Issue 4
  • DOI: 10.1063/1.1483299

Dynamical Scaling for Polymers in Theta Solvents
journal, September 1977