skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: GVT Algorithms and Discrete Event Dynamics on 128K+ Processor Cores

Abstract

Parallel discrete event simulation (PDES) represents a class of codes that are challenging to scale to large number of processors due to tight global timestamp-ordering and fine-grained event execution. One of the critical factors in scaling PDES is the efficiency of the underlying global virtual time (GVT) algorithm needed for correctness of parallel execution and speed of progress. Although many GVT algorithms have been proposed previously, few have been proposed for scalable asynchronous execution and none customized to exploit one-sided communication. Moreover, the detailed performance effects of actual GVT algorithm implementations on large platforms are unknown. Here, three major GVT algorithms intended for scalable execution on high-performance systems are studied: (1) a synchronous GVT algorithm that affords ease of implementation, (2) an asynchronous GVT algorithm that is more complex to implement but can relieve blocking latencies, and (3) a variant of the asynchronous GVT algorithm, proposed and studied for the first time here, to exploit one-sided communication in extant supercomputing platforms. Performance results are presented of implementations of these algorithms on over 64,000 cores of a Cray XT5 system, exercised on a range of parameters: optimistic and conservative synchronization, fine- to medium-grained event computation, synthetic and non-synthetic applications, and differentmore » lookahead values. Performance of tens of billions of events executed per second are registered, exceeding the speeds of any known PDES engine, and showing asynchronous GVT algorithms to outperform state-of-the-art synchronous GVT algorithms. Detailed PDES-specific runtime metrics are presented to further the understanding of tightly-coupled discrete event execution dynamics on massively parallel platforms.« less

Authors:
 [1];  [1];  [1]
  1. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Center for Computational Sciences
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1034668
DOE Contract Number:  
DE-AC05-00OR22725
Resource Type:
Conference
Resource Relation:
Conference: International Conference on High Performance Computing, Bangalore, India, 20111218, 20111221
Country of Publication:
United States
Language:
English
Subject:
99 GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; ALGORITHMS; COMMUNICATIONS; COMPUTERS; COMPUTER CODES; EFFICIENCY; IMPLEMENTATION; METRICS; PERFORMANCE; SIMULATION; SYNCHRONIZATION; VELOCITY

Citation Formats

Perumalla, Kalyan S, Park, Alfred J, and Tipparaju, Vinod. GVT Algorithms and Discrete Event Dynamics on 128K+ Processor Cores. United States: N. p., 2011. Web.
Perumalla, Kalyan S, Park, Alfred J, & Tipparaju, Vinod. GVT Algorithms and Discrete Event Dynamics on 128K+ Processor Cores. United States.
Perumalla, Kalyan S, Park, Alfred J, and Tipparaju, Vinod. Sat . "GVT Algorithms and Discrete Event Dynamics on 128K+ Processor Cores". United States.
@article{osti_1034668,
title = {GVT Algorithms and Discrete Event Dynamics on 128K+ Processor Cores},
author = {Perumalla, Kalyan S and Park, Alfred J and Tipparaju, Vinod},
abstractNote = {Parallel discrete event simulation (PDES) represents a class of codes that are challenging to scale to large number of processors due to tight global timestamp-ordering and fine-grained event execution. One of the critical factors in scaling PDES is the efficiency of the underlying global virtual time (GVT) algorithm needed for correctness of parallel execution and speed of progress. Although many GVT algorithms have been proposed previously, few have been proposed for scalable asynchronous execution and none customized to exploit one-sided communication. Moreover, the detailed performance effects of actual GVT algorithm implementations on large platforms are unknown. Here, three major GVT algorithms intended for scalable execution on high-performance systems are studied: (1) a synchronous GVT algorithm that affords ease of implementation, (2) an asynchronous GVT algorithm that is more complex to implement but can relieve blocking latencies, and (3) a variant of the asynchronous GVT algorithm, proposed and studied for the first time here, to exploit one-sided communication in extant supercomputing platforms. Performance results are presented of implementations of these algorithms on over 64,000 cores of a Cray XT5 system, exercised on a range of parameters: optimistic and conservative synchronization, fine- to medium-grained event computation, synthetic and non-synthetic applications, and different lookahead values. Performance of tens of billions of events executed per second are registered, exceeding the speeds of any known PDES engine, and showing asynchronous GVT algorithms to outperform state-of-the-art synchronous GVT algorithms. Detailed PDES-specific runtime metrics are presented to further the understanding of tightly-coupled discrete event execution dynamics on massively parallel platforms.},
doi = {},
url = {https://www.osti.gov/biblio/1034668}, journal = {},
number = ,
volume = ,
place = {United States},
year = {2011},
month = {1}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: