skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: FINAL REPORT TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-02R0100-2 REV 1 2/17/03

Abstract

This document provides the final report on data and results obtained from a series of nine tests performed on the one-third scale DuraMelter{trademark} 1200 (DM1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part B1 [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plans. The nine tests reported here were preceded by an initial series of short-duration tests conducted to support the start-up and commissioning of this system. This report is a followup to the previously issued Preliminary Data Summary Reports. The DM1200 system was deployed for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. These tests include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLWmore » vitrification development strategy. The primary objective of the present series of tests was to determine the effects of a variety of parameters on the glass production rate in comparison to the RPP-WTP HL W design basis of 400 kg/m{sup 2}/d. Previous testing on the DMIOOO system [1] concluded that achievement of that rate with simulants of projected WTP melter feeds (AZ-101 and C-106/AY-102) was unlikely without the use of bubblers. As part of those tests, the same feed that was used during the cold-commissioning of the West Valley Demonstration Project (WVDP) HLW vitrification system was run on the DM1000 system. The DM1000 tests reproduced the rates that were obtained at the larger WVDP facility, lending confidence to the tests results [1]. Since the inclusion or exclusion of a bubbler has significant design implications, the Project commissioned further tests to address this issue. In an effort to identify factors that might increase the glass production rate for projected WTP melter feeds, a subsequent series of tests was performed on the DM100 system. Several tests variables led to glass production rate increases to values significantly above the 400 kg/m2/d requirement. However, while small-scale melter tests are useful for screening relative effects, they tend to overestimate absolute glass production rates, particularly for un-bubbled tests. Consequently, when scale-up effects were taken into account, it was not clear that any of the variables investigated would conclusively meet the 400 kg/m{sup 2}/d requirement without bubbling. The present series of tests was therefore performed on the DM1200 one-third scale HLW pilot melter system to provide the required basis for a final decision on whether bubblers would be included in the HLW melter. The present tests employed the same AZ-101 waste simulant and glass composition that was used for previous testing for consistency and comparability with the results from the earlier tests.« less

Authors:
; ; ; ; ; ; ;
Publication Date:
Research Org.:
Hanford Site (HNF), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Environmental Management (EM)
OSTI Identifier:
1034651
Report Number(s):
ORP-51438 Rev 0
VSL-02R0100-2, Rev. 1, 2/17/2003; TRN: US1200887
DOE Contract Number:  
DE-AC27-08RV14800
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; COMMISSIONING; DESIGN; FLOWSHEETS; GLASS; PERFORMANCE; PROCESS CONTROL; PROCESSING; PRODUCTION; RELIABILITY; SPECIFICATIONS; START-UP; SURFACE AREA; TESTING; VITRIFICATION; WASTE FORMS; WASTES

Citation Formats

AA, KRUGER, KS, MATLACK, WK, KOT, T, BARDAKCI, W, GONG, NA, D'ANGELO, TR, SCHATZ, and IL, PEGG. FINAL REPORT TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-02R0100-2 REV 1 2/17/03. United States: N. p., 2011. Web. doi:10.2172/1034651.
AA, KRUGER, KS, MATLACK, WK, KOT, T, BARDAKCI, W, GONG, NA, D'ANGELO, TR, SCHATZ, & IL, PEGG. FINAL REPORT TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-02R0100-2 REV 1 2/17/03. United States. https://doi.org/10.2172/1034651
AA, KRUGER, KS, MATLACK, WK, KOT, T, BARDAKCI, W, GONG, NA, D'ANGELO, TR, SCHATZ, and IL, PEGG. 2011. "FINAL REPORT TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-02R0100-2 REV 1 2/17/03". United States. https://doi.org/10.2172/1034651. https://www.osti.gov/servlets/purl/1034651.
@article{osti_1034651,
title = {FINAL REPORT TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-02R0100-2 REV 1 2/17/03},
author = {AA, KRUGER and KS, MATLACK and WK, KOT and T, BARDAKCI and W, GONG and NA, D'ANGELO and TR, SCHATZ and IL, PEGG},
abstractNote = {This document provides the final report on data and results obtained from a series of nine tests performed on the one-third scale DuraMelter{trademark} 1200 (DM1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part B1 [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plans. The nine tests reported here were preceded by an initial series of short-duration tests conducted to support the start-up and commissioning of this system. This report is a followup to the previously issued Preliminary Data Summary Reports. The DM1200 system was deployed for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. These tests include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The primary objective of the present series of tests was to determine the effects of a variety of parameters on the glass production rate in comparison to the RPP-WTP HL W design basis of 400 kg/m{sup 2}/d. Previous testing on the DMIOOO system [1] concluded that achievement of that rate with simulants of projected WTP melter feeds (AZ-101 and C-106/AY-102) was unlikely without the use of bubblers. As part of those tests, the same feed that was used during the cold-commissioning of the West Valley Demonstration Project (WVDP) HLW vitrification system was run on the DM1000 system. The DM1000 tests reproduced the rates that were obtained at the larger WVDP facility, lending confidence to the tests results [1]. Since the inclusion or exclusion of a bubbler has significant design implications, the Project commissioned further tests to address this issue. In an effort to identify factors that might increase the glass production rate for projected WTP melter feeds, a subsequent series of tests was performed on the DM100 system. Several tests variables led to glass production rate increases to values significantly above the 400 kg/m2/d requirement. However, while small-scale melter tests are useful for screening relative effects, they tend to overestimate absolute glass production rates, particularly for un-bubbled tests. Consequently, when scale-up effects were taken into account, it was not clear that any of the variables investigated would conclusively meet the 400 kg/m{sup 2}/d requirement without bubbling. The present series of tests was therefore performed on the DM1200 one-third scale HLW pilot melter system to provide the required basis for a final decision on whether bubblers would be included in the HLW melter. The present tests employed the same AZ-101 waste simulant and glass composition that was used for previous testing for consistency and comparability with the results from the earlier tests.},
doi = {10.2172/1034651},
url = {https://www.osti.gov/biblio/1034651}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Dec 29 00:00:00 EST 2011},
month = {Thu Dec 29 00:00:00 EST 2011}
}