skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Resolving Two Closely Overlapping -CN Vibrations and Structure in the Langmuir Monolayer of the Long-Chain Nonadecanenitrile by Polarization Sum Frequency Generation Vibrational Spectroscopy

Abstract

Polarization sum frequency generation vibrational spectra (SFG-VS) reveals that there are two distinctively different but closely overlapping -CN vibrations at 2244.5 cm{sup -1} and 2251.1 cm{sup -1}, respectively, in the Langmuir monolayer of the long-chain nonadecanenitrile (C18CN, CH{sub 3}(CH{sub 2}){sub 17}CN, or C18CN)at the air/water interface. The blue shifted -CN groups at 2251.1 cm{sup -1} peak is about 1.8 times broader than that of the 2244.5 cm{sup -1}. Both the spectral shift and spectral width are consistent with the picture that this blue shifted peak corresponds to the solvated -CN group; while the 2244.5 cm{sup -1} peak is the signature of the less solvated -CN group. Polarization dependence of these two peaks further suggest that the -CN group corresponding to the 2251.1 cm{sup -1} peak is tilted with an average angle of 50{sup o} from interface normal, where that to the 2244.5 cm{sup -1} peak is tilted with an angle around 67{sup o}. The relative population for the -CN groups corresponding to the 2251.1 cm{sup -1} peak is about three times of that of the 2244.5 cm{sup -1} peak. These results suggest that the -CN head groups in the C18CN Langmuir monolayer are not aligned uniformly at slightly different depth,more » in order to avoid the strong repulsive forces between the strong -CN dipoles. The SFG-VS spectra of the O-H stretches at C18CN Langmuir monolayer is similar to those of the 4''-n-pentyl-4-cyano-p-terphenyl (5CT) monolayer, indicating complete exclusion of the water molecules from the C18CN Langmuir monolayer, but significantly different from those of the 4''-n-octyl-4-p-cyanobiphenyl (8CB) monolayer, as well as those of the air/acetonitrile aqueous solution interface. Different from previous held understandings, these results suggest that the structure of the insoluble long-chain C18CN Langmuir monolayer is significantly different from that of the Gibbs adsorption layer of the short chain soluble acetonitrile or propanenitrile aqueous solution surfaces. These observations not only shed new light on understanding the detailed structure and interactions in the molecular monolayer and films, but also suggest the importance of the polarization and spectral resolution in the SFG studies.« less

Authors:
; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org.:
USDOE
OSTI Identifier:
1034575
Report Number(s):
PNNL-SA-83653
Journal ID: ISSN 1932-7447; 46004; TRN: US201203%%628
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Physical Chemistry C; Journal Volume: 116; Journal Issue: 4
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ACETONITRILE; ADSORPTION; AQUEOUS SOLUTIONS; CHAINS; DIPOLES; POLARIZATION; RESOLUTION; SPECTRA; SPECTRAL SHIFT; SPECTROSCOPY; WATER; Surface, vibratiobnal spectroscopy, Sum-Frequency Generation, Langmuir monolayer, nonadecanenitrile; Environmental Molecular Sciences Laboratory

Citation Formats

Zhang, Zhen, Guo, Yuan, Lu, Zhou, Velarde Ruiz Esparza, Luis A., and Wang, Hongfei. Resolving Two Closely Overlapping -CN Vibrations and Structure in the Langmuir Monolayer of the Long-Chain Nonadecanenitrile by Polarization Sum Frequency Generation Vibrational Spectroscopy. United States: N. p., 2012. Web. doi:10.1021/jp210138s.
Zhang, Zhen, Guo, Yuan, Lu, Zhou, Velarde Ruiz Esparza, Luis A., & Wang, Hongfei. Resolving Two Closely Overlapping -CN Vibrations and Structure in the Langmuir Monolayer of the Long-Chain Nonadecanenitrile by Polarization Sum Frequency Generation Vibrational Spectroscopy. United States. doi:10.1021/jp210138s.
Zhang, Zhen, Guo, Yuan, Lu, Zhou, Velarde Ruiz Esparza, Luis A., and Wang, Hongfei. 2012. "Resolving Two Closely Overlapping -CN Vibrations and Structure in the Langmuir Monolayer of the Long-Chain Nonadecanenitrile by Polarization Sum Frequency Generation Vibrational Spectroscopy". United States. doi:10.1021/jp210138s.
@article{osti_1034575,
title = {Resolving Two Closely Overlapping -CN Vibrations and Structure in the Langmuir Monolayer of the Long-Chain Nonadecanenitrile by Polarization Sum Frequency Generation Vibrational Spectroscopy},
author = {Zhang, Zhen and Guo, Yuan and Lu, Zhou and Velarde Ruiz Esparza, Luis A. and Wang, Hongfei},
abstractNote = {Polarization sum frequency generation vibrational spectra (SFG-VS) reveals that there are two distinctively different but closely overlapping -CN vibrations at 2244.5 cm{sup -1} and 2251.1 cm{sup -1}, respectively, in the Langmuir monolayer of the long-chain nonadecanenitrile (C18CN, CH{sub 3}(CH{sub 2}){sub 17}CN, or C18CN)at the air/water interface. The blue shifted -CN groups at 2251.1 cm{sup -1} peak is about 1.8 times broader than that of the 2244.5 cm{sup -1}. Both the spectral shift and spectral width are consistent with the picture that this blue shifted peak corresponds to the solvated -CN group; while the 2244.5 cm{sup -1} peak is the signature of the less solvated -CN group. Polarization dependence of these two peaks further suggest that the -CN group corresponding to the 2251.1 cm{sup -1} peak is tilted with an average angle of 50{sup o} from interface normal, where that to the 2244.5 cm{sup -1} peak is tilted with an angle around 67{sup o}. The relative population for the -CN groups corresponding to the 2251.1 cm{sup -1} peak is about three times of that of the 2244.5 cm{sup -1} peak. These results suggest that the -CN head groups in the C18CN Langmuir monolayer are not aligned uniformly at slightly different depth, in order to avoid the strong repulsive forces between the strong -CN dipoles. The SFG-VS spectra of the O-H stretches at C18CN Langmuir monolayer is similar to those of the 4''-n-pentyl-4-cyano-p-terphenyl (5CT) monolayer, indicating complete exclusion of the water molecules from the C18CN Langmuir monolayer, but significantly different from those of the 4''-n-octyl-4-p-cyanobiphenyl (8CB) monolayer, as well as those of the air/acetonitrile aqueous solution interface. Different from previous held understandings, these results suggest that the structure of the insoluble long-chain C18CN Langmuir monolayer is significantly different from that of the Gibbs adsorption layer of the short chain soluble acetonitrile or propanenitrile aqueous solution surfaces. These observations not only shed new light on understanding the detailed structure and interactions in the molecular monolayer and films, but also suggest the importance of the polarization and spectral resolution in the SFG studies.},
doi = {10.1021/jp210138s},
journal = {Journal of Physical Chemistry C},
number = 4,
volume = 116,
place = {United States},
year = 2012,
month = 1
}
  • Even though in principle the frequency-domain and time-domain spectroscopic measurement should generate identical information for a given molecular system, inhomogeneous character of surface vibrations in the sum-frequency generation vibrational spectroscopy (SFG-VS) studies has only been studied with the time-domain SFGVS by mapping the decay of the vibrational polarization using ultrafast lasers, due to the lack of SFG vibrational spectra with high enough spectral resolution and accurate enough line shape. Here with recently developed high-resolution broadband SFG-VS (HR-BB-SFG-VS) we show that the inhomogeneous line shape can be obtained in the frequency-domain, for the anchoring CN stretch of the 4-n-octyl-4'-cyanobiphenyl (8CB) Langmuirmore » monolayer at the air-water interface, and that an excellent agreement with the time-domain SFG free-induction-decay (FID) results can be established. We found that the 8CB CN stretch spectrum consists of a single peak centered at 2234.00 + * 0.01 cm-1 with a total line width of 10.9 + - 0.3 cm-1 at half maximum. The Lorentzian contribution accounts only for 4:7 + -0:4 cm-1 to this width and the Gaussian (inhomogeneous) broadening for as much as 8:1+*0:2 cm-1. Polarization analysis of the -CN spectra showed that the -CN group is tilted 57 + - 2 degrees from the surface normal. The large heterogeneity in the -CN spectrum is tentatively attributed to the -CN group interactions with the interfacial water molecules penetrated/accomodated into the 8CB monolayer, a unique phenomenon for the nCB Langmuir monolayers reported previously.« less
  • Understanding the structure of water near cell membranes is crucial for characterizing water-mediated events such as molecular transport. To obtain structural information of water near a membrane, it is useful to have a surface-selective technique that can probe only interfacial water molecules. One such technique is vibrational sum-frequency generation (VSFG) spectroscopy. As model systems for studying membrane headgroup/water interactions, in this paper we consider lipid and surfactant monolayers on water. We adopt a theoretical approach combining molecular dynamics simulations and phase-sensitive VSFG to investigate water structure near these interfaces. Our simulated spectra are in qualitative agreement with experiments and revealmore » orientational ordering of interfacial water molecules near cationic, anionic, and zwitterionic interfaces. OH bonds of water molecules point toward an anionic interface leading to a positive VSFG peak, whereas the water hydrogen atoms point away from a cationic interface leading to a negative VSFG peak. Coexistence of these two interfacial water species is observed near interfaces between water and mixtures of cationic and anionic lipids, as indicated by the presence of both negative and positive peaks in their VSFG spectra. In the case of a zwitterionic interface, OH orientation is toward the interface on the average, resulting in a positive VSFG peak.« less
  • IR + visible sum frequency generation (SFG) has been used to obtain the vibrational spectra and orientations for both the nitrile (CN) head group and the methyl (CD[sub 3]) tail of the insoluble long-chain amphiphile CD[sub 3](CH[sub 2])[sub 19]CN at the air/water interface. The results show that the orientations of the head group and the terminal group vary with amphiphile surface density, but in markedly different ways. It is found at the amphiphile density, which corresponds to the phase transition from the gas/liquid coexistence region to the liquid region, that the hydrogen bonds of the CN head groups to watermore » are broken, the water is squeezed out of the monolayer, and the orientation of the head group changes sharply. The possibility that the rupturing of the hydrogen bonds and reorientation of the CN head groups may be the trigger for the phase transition is discussed. In addition to the SFG study of the amphiphile at the air/water interface, a method was discovered that enables SFG to remove the ambiguity in the ratio of the two Raman polarizability elements for a symmetric stretch. 30 refs., 6 figs.« less
  • Here we report a novel twin polarization angle (TPA) approach in the quantitative chirality detection with the surface sum-frequency generation vibrational spectroscopy (SFG-VS). Generally, the achiral contribution dominates the surface SFG-VS signal, and the pure chiral signal is usually two or three orders of magnitude smaller. Therefore, it has been difficult to make quantitative detection and analysis of the chiral contributions to the surface SFG- VS signal. In the TPA method, by varying together the polarization angles of the incoming visible light and the sum frequency signal at fixed s or p polarization of the incoming infrared beam, the polarizationmore » dependent SFG signal can give not only direct signature of the chiral contribution in the total SFG-VS signal, but also the accurate measurement of the chiral and achiral components in the surface SFG signal. The general description of the TPA method is presented and the experiment test of the TPA approach is also presented for the SFG-VS from the S- and R-limonene chiral liquid surfaces. The most accurate degree of chiral excess values thus obtained for the 2878 cm⁻¹ spectral peak of the S- and R-limonene liquid surfaces are (23.7±0.4)% and ({25.4±1.3)%, respectively.« less
  • Sum-frequency generation vibrational spectroscopy (SFG) can provide detailed information and understanding of molecular vibrational spectroscopy, orientational and conformational structure, and interactions of molecular surfaces and interfaces, through quantitative measurement and analysis. In this review, we present the current status and discuss the main developments on the measurement of intrinsic SFG spectral lineshape, formulations for polarization measurement and orientation analysis of the SFG-VS spectra. The main focus is to present a coherent formulation and discuss the main concepts or issues that can help to make SFG-VS a quantitative analytical and research tool in revealing the chemistry and physics of complex molecularmore » surface and interface.« less