skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural Basis for Promoter ;#8722;10 Element Recognition by the Bacterial RNA Polymerase [sigma] Subunit

Journal Article · · Cell

The key step in bacterial promoter opening is recognition of the -10 promoter element (T-{sub 12}A-{sub 11}T-{sub 10}A-{sub 9}A-{sub 8}T{sub -7} consensus sequence) by the RNA polymerase {alpha} subunit. We determined crystal structures of {alpha} domain 2 bound to single-stranded DNA bearing -10 element sequences. Extensive interactions occur between the protein and the DNA backbone of every -10 element nucleotide. Base-specific interactions occur primarily with A{sub -11} and T{sub -7}, which are flipped out of the single-stranded DNA base stack and buried deep in protein pockets. The structures, along with biochemical data, support a model where the recognition of the -10 element sequence drives initial promoter opening as the bases of the nontemplate strand are extruded from the DNA double-helix and captured by {alpha}. These results provide a detailed structural basis for the critical roles of A{sub -11} and T{sub -7} in promoter melting and reveal important insights into the initiation of transcription bubble formation.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Organization:
National Institutes of Health (NIH)
OSTI ID:
1031927
Journal Information:
Cell, Vol. 147, Issue 6; ISSN 0092-8674
Country of Publication:
United States
Language:
ENGLISH