skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: EFFECTS OF GRAPHITE SURFACE ROUGHNESS ON BYPASS FLOW COMPUTATIONS FOR AN HTGR

Conference ·
OSTI ID:1031664

Bypass flow in a prismatic high temperature gas reactor (HTGR) occurs between graphite blocks as they sit side by side in the core. Bypass flow is not intentionally designed to occur in the reactor, but is present because of tolerances in manufacture, imperfect installation and expansion and shrinkage of the blocks from heating and irradiation. It is desired to increase the knowledge of the effects of such flow, which has been estimated to be as much as 20% of the total helium coolant flow. Computational fluid dynamic (CFD) simulations can provide estimates of the scale and impacts of bypass flow. Previous CFD calculations have examined the effects of bypass gap width, level and distribution of heat generation and effects of shrinkage. The present contribution examines the effects of graphite surface roughness on the bypass flow for different relative roughness factors on three gap widths. Such calculations should be validated using specific bypass flow measurements. While such experiments are currently underway for the specific reference prismatic HTGR design for the next generation nuclear plant (NGNP) program of the U. S. Dept. of Energy, the data are not yet available. To enhance confidence in the present calculations, wall shear stress and heat transfer results for several turbulence models and their associated wall treatments are first compared for flow in a single tube that is representative of a coolant channel in the prismatic HTGR core. The results are compared to published correlations for wall shear stress and Nusselt number in turbulent pipe flow. Turbulence models that perform well are then used to make bypass flow calculations in a symmetric onetwelfth sector of a prismatic block that includes bypass flow. The comparison of shear stress and Nusselt number results with published correlations constitutes a partial validation of the CFD model. Calculations are also compared to ones made previously using a different CFD code. Results indicate that increasing surface roughness increases the maximum fuel and helium temperatures as do increases in gap width. However, maximum coolant temperature variation due to increased gap width is not changed by surface roughness.

Research Organization:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Organization:
DOE - NE
DOE Contract Number:
DE-AC07-05ID14517
OSTI ID:
1031664
Report Number(s):
INL/CON-11-21340; TRN: US1200150
Resource Relation:
Conference: ASME 2011 Pressure Vessels and Piping Division Conference,Baltimore, Maryland,07/17/2011,07/21/2011
Country of Publication:
United States
Language:
English