skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cryogenic Control System

Abstract

The control system (CS) for the cryogenic arrangement of the DO Liquid Argon Calorimeter consists of a Texas instruments 560/565 Programmable Logical Controller (PLC), two remote bases with Remote Base Controllers and a corresponding set of input/output (I/O) modules, and a PC AST Premium 286 (IBM AT Compatible). The PLC scans a set of inputs and provides a set of outputs based on a ladder logic program and PID control loops. The inputs are logic or analog (current, voltage) signals from equipment status switches or transducers. The outputs are logic or analog (current or voltage) signals for switching solenoids and positioning pneumatic actuators. Programming of the PLC is preformed by using the TISOFT2/560/565 package, which is installed in the PC. The PC communicates to the PLC through a serial RS232 port and provides operator interface to the cryogenic process using Xpresslink software.

Authors:
;
Publication Date:
Research Org.:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1031144
Report Number(s):
FERMILAB-D0-EN-208
TRN: US201201%%640
DOE Contract Number:
AC02-07CH11359
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; ACTUATORS; ARGON; CALORIMETERS; CONTROL SYSTEMS; CRYOGENICS; PNEUMATICS; POSITIONING; PROGRAMMING; SOLENOIDS; SWITCHES; TRANSDUCERS; Experiment-HEP

Citation Formats

Goloborod'ko, S., and /Fermilab. Cryogenic Control System. United States: N. p., 1989. Web. doi:10.2172/1031144.
Goloborod'ko, S., & /Fermilab. Cryogenic Control System. United States. doi:10.2172/1031144.
Goloborod'ko, S., and /Fermilab. 1989. "Cryogenic Control System". United States. doi:10.2172/1031144. https://www.osti.gov/servlets/purl/1031144.
@article{osti_1031144,
title = {Cryogenic Control System},
author = {Goloborod'ko, S. and /Fermilab},
abstractNote = {The control system (CS) for the cryogenic arrangement of the DO Liquid Argon Calorimeter consists of a Texas instruments 560/565 Programmable Logical Controller (PLC), two remote bases with Remote Base Controllers and a corresponding set of input/output (I/O) modules, and a PC AST Premium 286 (IBM AT Compatible). The PLC scans a set of inputs and provides a set of outputs based on a ladder logic program and PID control loops. The inputs are logic or analog (current, voltage) signals from equipment status switches or transducers. The outputs are logic or analog (current or voltage) signals for switching solenoids and positioning pneumatic actuators. Programming of the PLC is preformed by using the TISOFT2/560/565 package, which is installed in the PC. The PC communicates to the PLC through a serial RS232 port and provides operator interface to the cryogenic process using Xpresslink software.},
doi = {10.2172/1031144},
journal = {},
number = ,
volume = ,
place = {United States},
year = 1989,
month = 2
}

Technical Report:

Save / Share:
  • A safety system has been designed and constructed to mitigate the asphyxiation and low temperature hazards presented by the distribution and usage of cryogenic liquids in work spaces at Sandia National Laboratories. After identifying common accident scenarios, the CRYOFACS (Cryogenic Fail-Safe Control System) unit was designed, employing microprocessor technology and software that can be easily modified to accommodate varying laboratory requirements. Sensors have been incorporated in the unit for the early detection of accidental releases or overflows of cryogenic liquids. The CRYOFACS design includes control (and shutdown) of the cryogen source upon error detection, and interfaces with existing oxygen monitors,more » in common use at Sandia Labs, to provide comprehensive protection for both personnel and property.« less
  • A safety system has been designed and constructed to mitigate the asphyxiation and low temperature hazards presented by the distribution and usage of cryogenic liquids in work spaces at Sandia National Laboratories. After identifying common accident scenarios, the CRYOFACS (Cryogenic Fail-Safe Control System) unit was designed, employing microprocessor technology and software that can be easily modified to accommodate varying laboratory requirements. Sensors have been incorporated in the unit for the early detection of accidental releases or overflows of cryogenic liquids. The CRYOFACS design includes control (and shutdown) of the cryogen source upon error detection, and interfaces with existing oxygen monitors,more » in common use at Sandia Labs, to provide comprehensive protection for both personnel and property.« less
  • The DZERO VLPC Cryostat and the Superconducting Solenoid both require an insulating Vacuum of 10{sup -5} Torr or less. There is a vacuum system on the Detector Platform consisting of 2 Turbomolecular vacuum pumps and their associated piping, valves, instrumentation that are dedicated to this task. This vacuum equipment requires an operator interface and control logic in order to function properly. The operator interface allows an operator to monitor, control and configure the proper pumping setup required at any given time. The control logic is needed to protect the Vacumm vessels and Vacuum equipment from catastrophic events that may harmmore » them. This is typically done with interlock chains or strings.« less
  • This report describes a microcomputer-based monitoring and control system devised within, and used by, the Cryogenic Operations group at SLAC. Presently, a version of it is operating at the one meter liquid hydrogen bubble chamber augmenting the conventional pneumatic and human feedback system. Its use has greatly improved the controlled tolerances of temperature and pulse shape, and it has nearly eliminated the need for operating personnel to adjust the conventional pneumatic control system. The latter is most important since the rapid cycling machine can demand attentions beyond the operator's skill. Similar microcomputer systems are being prepared to monitor and controlmore » cryogenic devices situated in regions of radiation which preclude human entry and at diverse locations which defy the dexterity of the few operators assigned to maintain them. An IMSAI 8080 microcomputer is basic to the system. The key to the use of the IMSAI 8080 in this system was in the development of unique interface circuitry, and the report is mostly concerned with this.« less