skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comparison of cation adsorption by isostructural rutile and cassiterite.

Journal Article · · Langmuir
DOI:https://doi.org/10.1021/la1040163· OSTI ID:1029460

Macroscopic net proton charging curves for powdered rutile and cassiterite specimens with the (110) crystal face predominant, as a function of pH in RbCl and NaCl solutions, trace SrCl{sub 2} in NaCl, and trace ZnCl{sub 2} in NaCl and Na Triflate solutions, are compared to corresponding molecular-level information obtained from static DFT optimizations and classical MD simulations, as well as synchrotron X-ray methods. The similarities and differences in the macroscopic charging behavior of rutile and cassiterite largely reflect the cation binding modes observed at the molecular level. Cation adsorption is primarily inner-sphere on both isostructural (110) surfaces, despite predictions that outer-sphere binding should predominate on low bulk dielectric constant oxides such as cassiterite ({epsilon}{sub bulk} {approx} 11). Inner-sphere adsorption is also significant for Rb{sup +} and Na{sup +} on neutral surfaces, whereas Cl{sup -} binding is predominately outer-sphere. As negative surface charge increases, relatively more Rb{sup +}, Na{sup +}, and especially Sr{sup 2+} are bound in highly desolvated tetradentate fashion on the rutile (110) surface, largely accounting for enhanced negative charge development relative to cassiterite. Charging curves in the presence of Zn{sup 2+} are very steep but similar for both oxides, reflective of Zn{sup 2+} hydrolysis (and accompanying proton release) during the adsorption process, and the similar binding modes for ZnOH{sup +} on both surfaces. These results suggest that differences in cation adsorption between high and low bulk dielectric constant oxides are more subtly related to the relative degree of cation desolvation accompanying inner-sphere binding (i.e., more tetradentate binding on rutile), rather than distinct inner- and outer-sphere adsorption modes. Cation desolvation may be favored at the rutile (110) surface in part because inner-sphere water molecules are bound further from and less tightly than on the cassiterite (110) surface. Hence, their removal upon inner-sphere cation binding is relatively more favorable.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC02-06CH11357
OSTI ID:
1029460
Report Number(s):
ANL/XSD/JA-71410; LANGD5; TRN: US201123%%302
Journal Information:
Langmuir, Vol. 27, Issue 8; ISSN 0743-7463
Country of Publication:
United States
Language:
ENGLISH