skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Learning a detection map for a network of unattended ground sensors.

Publication Date:
Research Org.:
Sandia National Laboratories
Sponsoring Org.:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Proposed for presentation at the SPIE Defense Security & Sensing Conference held April 5-9, 2010 in Orlando, FL.
Country of Publication:
United States

Citation Formats

Nguyen, Hung D., and Koch, Mark William. Learning a detection map for a network of unattended ground sensors.. United States: N. p., 2010. Web.
Nguyen, Hung D., & Koch, Mark William. Learning a detection map for a network of unattended ground sensors.. United States.
Nguyen, Hung D., and Koch, Mark William. Mon . "Learning a detection map for a network of unattended ground sensors.". United States. doi:.
title = {Learning a detection map for a network of unattended ground sensors.},
author = {Nguyen, Hung D. and Koch, Mark William},
abstractNote = {},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Mar 01 00:00:00 EST 2010},
month = {Mon Mar 01 00:00:00 EST 2010}

Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • We have developed algorithms to automatically learn a detection map of a deployed sensor field for a virtual presence and extended defense (VPED) system without apriori knowledge of the local terrain. The VPED system is an unattended network of sensor pods, with each pod containing acoustic and seismic sensors. Each pod has the ability to detect and classify moving targets at a limited range. By using a network of pods we can form a virtual perimeter with each pod responsible for a certain section of the perimeter. The site's geography and soil conditions can affect the detection performance of themore » pods. Thus, a network in the field may not have the same performance as a network designed in the lab. To solve this problem we automatically estimate a network's detection performance as it is being installed at a site by a mobile deployment unit (MDU). The MDU will wear a GPS unit, so the system not only knows when it can detect the MDU, but also the MDU's location. In this paper, we demonstrate how to handle anisotropic sensor-configurations, geography, and soil conditions.« less
  • In this paper, we have presented the relative advantages and complementary aspects of acoustic and seismic ground sensors. A detailed description of both acoustic and seismic ground sensing methods has been provided. Acoustic and seismic phenomenology including source mechanisms, propagation paths, attenuation, and sensing have been discussed in detail. The effects of seismo-acoustic and acousto-seismic interactions as well as recommendations for minimizing seismic/acoustic cross talk have been highlighted. We have shown representative acoustic and seismic ground sensor data to illustrate the advantages and complementary aspects of the two modalities. The data illustrate that seismic transducers often respond to acoustic excitationmore » through acousto-seismic coupling. Based on these results, we discussed the implications of this phenomenology on the detection, identification, and localization objectives of unattended ground sensors. We have concluded with a methodology for selecting the preferred modality (acoustic and/or seismic) for a particular application.« less
  • Although the Cold War has ended, the world has not become more peaceful. Without the stability provided by an international system dominated by two super-powers, local conflicts are more likely to escalate. Agreements to counter destabilizing pressures in regional conflicts can benefit from the use of cooperative monitoring. Cooperative monitoring is the collecting, analyzing, and sharing of information among parties to an agreement. Ground sensor technologies can contribute to the collection of relevant information. If implemented with consideration for local conditions, cooperative monitoring can build confidence, strengthen existing agreements, and set the stage for continued progress. This presentation describes twomore » examples: the Israeli-Egyptian Sinai agreements of the 1970s and a conceptual example for the contemporary Korean Peninsula. The Sinai was a precedent for the successful use of UGS within the context of cooperative monitoring. The Korean Peninsula is the world`s largest military confrontation. Future confidence building measures that address the security needs of both countries could decrease the danger of conflict and help create an environment for a peace agreement.« less
  • The unattended sensing of stationary (i.e. non-mobile) targets is important in applications ranging from counter-proliferation to law enforcement. With stationary targets, sources of seismic, acoustic, and electro-magnetic emissions can potentially be used to detect, identify, and locate the target. Stationary targets have considerably different sensing requirements than the traditional mobile-target unattended ground sensor applications. This paper presents the novel features and requirements of a system for sensing stationary targets. In particular, issues associated with long-listen time signal processing for signal detection, and array processing techniques for signal localization are presented. Example data and signal processing outputs from a stationary targetmore » will be used to illustrate these issues. The impact on sensor, electronic signal processing, battery subsystem, and communication requirements will also be discussed. The paper will conclude with a detailed comparison between mobile-target and stationary-target unattended ground sensor architectures.« less
  • No abstract prepared.