skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of syngas composition and CO2-diluted oxygen on performance of a premixed swirl-stabilized combustor.

Abstract

Future energy systems based on gasification of coal or biomass for co-production of electrical power and fuels may require gas turbine operation on unusual gaseous fuel mixtures. In addition, global climate change concerns may dictate the generation of a CO{sub 2} product stream for end-use or sequestration, with potential impacts on the oxidizer used in the gas turbine. In this study the operation at atmospheric pressure of a small, optically accessible swirl-stabilized premixed combustor, burning fuels ranging from pure methane to conventional and H{sub 2}-rich and H{sub 2}-lean syngas mixtures is investigated. Both air and CO{sub 2}-diluted oxygen are used as oxidizers. CO and NO{sub x} emissions for these flames have been determined from the lean blowout limit to slightly rich conditions ({phi} - 1.03). In practice, CO{sub 2}-diluted oxygen systems will likely be operated close to stoichiometric conditions to minimize oxygen consumption while achieving acceptable NO{sub x} performance. The presence of hydrogen in the syngas fuel mixtures results in more compact, higher temperature flames, resulting in increased flame stability and higher NO{sub x} emissions. Consistent with previous experience, the stoichiometry of lean blowout decreases with increasing H{sub 2} content in the syngas. Similarly, the lean stoichiometry at which COmore » emissions become significant decreases with increasing H{sub 2} content. For the mixtures investigated, CO emissions near the stoichiometric point do not become significant until {phi} > 0.95. At this stoichiometric limit, CO emissions rise more rapidly for combustion in O{sub 2}-CO{sub 2} mixtures than for combustion in air.« less

Authors:
; ;
Publication Date:
Research Org.:
Sandia National Laboratories
Sponsoring Org.:
USDOE
OSTI Identifier:
1028907
Report Number(s):
SAND2007-0041C
TRN: US201122%%602
DOE Contract Number:
AC04-94AL85000
Resource Type:
Conference
Resource Relation:
Conference: Proposed for presentation at the ASME Turbo Expo 2007 held May 14-17, 2007 in Montreal, Canada.
Country of Publication:
United States
Language:
English
Subject:
01 COAL, LIGNITE, AND PEAT; 03 NATURAL GAS; 08 HYDROGEN; 09 BIOMASS FUELS; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; ATMOSPHERIC PRESSURE; BIOMASS; BLOWOUTS; CLIMATIC CHANGE; COAL; COMBUSTION; ENERGY SYSTEMS; FLAMES; GAS TURBINES; GASIFICATION; HYDROGEN; METHANE; MIXTURES; OXIDIZERS; OXYGEN; STABILITY; STOICHIOMETRY; SYNGAS PROCESS

Citation Formats

Williams, Timothy C., Shaddix, Christopher R., and Schefer, Robert W. Effect of syngas composition and CO2-diluted oxygen on performance of a premixed swirl-stabilized combustor.. United States: N. p., 2007. Web.
Williams, Timothy C., Shaddix, Christopher R., & Schefer, Robert W. Effect of syngas composition and CO2-diluted oxygen on performance of a premixed swirl-stabilized combustor.. United States.
Williams, Timothy C., Shaddix, Christopher R., and Schefer, Robert W. Mon . "Effect of syngas composition and CO2-diluted oxygen on performance of a premixed swirl-stabilized combustor.". United States. doi:.
@article{osti_1028907,
title = {Effect of syngas composition and CO2-diluted oxygen on performance of a premixed swirl-stabilized combustor.},
author = {Williams, Timothy C. and Shaddix, Christopher R. and Schefer, Robert W.},
abstractNote = {Future energy systems based on gasification of coal or biomass for co-production of electrical power and fuels may require gas turbine operation on unusual gaseous fuel mixtures. In addition, global climate change concerns may dictate the generation of a CO{sub 2} product stream for end-use or sequestration, with potential impacts on the oxidizer used in the gas turbine. In this study the operation at atmospheric pressure of a small, optically accessible swirl-stabilized premixed combustor, burning fuels ranging from pure methane to conventional and H{sub 2}-rich and H{sub 2}-lean syngas mixtures is investigated. Both air and CO{sub 2}-diluted oxygen are used as oxidizers. CO and NO{sub x} emissions for these flames have been determined from the lean blowout limit to slightly rich conditions ({phi} - 1.03). In practice, CO{sub 2}-diluted oxygen systems will likely be operated close to stoichiometric conditions to minimize oxygen consumption while achieving acceptable NO{sub x} performance. The presence of hydrogen in the syngas fuel mixtures results in more compact, higher temperature flames, resulting in increased flame stability and higher NO{sub x} emissions. Consistent with previous experience, the stoichiometry of lean blowout decreases with increasing H{sub 2} content in the syngas. Similarly, the lean stoichiometry at which CO emissions become significant decreases with increasing H{sub 2} content. For the mixtures investigated, CO emissions near the stoichiometric point do not become significant until {phi} > 0.95. At this stoichiometric limit, CO emissions rise more rapidly for combustion in O{sub 2}-CO{sub 2} mixtures than for combustion in air.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Future energy systems based on gasification of coal or biomass for co-production of electrical power and fuels may require gas turbine operation on unusual gaseous fuel mixtures. In addition, global climate change concerns may dictate the generation of a CO{sub 2} product stream for end-use or sequestration, with potential impacts on the oxidizer used in the gas turbine. In this study the operation at atmospheric pressure of a small, optically accessible swirl-stabilized premixed combustor, burning fuels ranging from pure methane to conventional and H{sub 2}-rich and H{sub 2}-lean syngas mixtures is investigated. Both air and CO{sub 2}-diluted oxygen are usedmore » as oxidizers. CO and NOx emissions for these flames have been determined from the lean blowout limit to slightly rich conditions {phi} about 1.03). In practice, CO{sub 2}-diluted oxygen systems will likely be operated close to stoichiometric conditions to minimize oxygen consumption while achieving acceptable NOx performance. The presence of hydrogen in the syngas fuel mixtures results in more compact, higher temperature flames, resulting in increased flame stability and higher NOx emissions. Consistent with previous experience, the stoichiometry of lean blowout decreases with increasing H{sub 2} content in the syngas. Similarly, the lean stoichiometry at which CO emissions become significant decreases with increasing H{sub 2} content. For the mixtures investigated, CO emissions near the stoichiometric point do not become significant until {phi} > 0.95. At this stoichiometric limit, CO emissions rise more rapidly for combustion in O{sub 2}-CO{sub 2} mixtures than for combustion in air.« less
  • Abstract not provided.
  • No abstract prepared.
  • Planar velocity measurements under cold-flow conditions in a swirl-stabilized dump combustor typical of land-based gas turbine combustors were carried out using two-dimensional particle image velocimetry (PIV). Axial, radial, and tangential velocity components were measured sequentially using two experimental configurations. Mean and root-mean-squared velocity components are presented along with instantaneous realizations of the flowfield. A numerical study of the flowfield using large-eddy simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) techniques was conducted in an effort to help understand the complex hydrodynamics observed in the experiments. The agreement between the experimental data and LES simulation was good with both showing evidence of amore » precessing vortex core. The results of the RANS simulation were not as encouraging. The results provide a fundamental understanding of the complex flowfield associated with the relatively simple geometry and also serve as a baseline validation dataset for further numerical simulations of the current geometry. Validation of LES models in a highly swirled, nonreacting flowfield such as the work presented here is an essential step towards more accurate prediction in a reacting environment.« less
  • A novel means has been developed for using weak swirl to stabilize freely propagating open premixed turbulent flames (swirl numbers between 0.05 to 0.3). By injecting a small amount of air tangentially into the co-flow of a concentric burner, stationary flames can be maintained above the burner exit for a large range of mixture, turbulence and flow conditions. The absence of physical surfaces in the vicinity of the flame provides free access to laser diagnostics. Laser Doppler anemometry and laser Mie scattering measurements of four flames with and without incident turbulence show that their features are typical of wrinkled laminarmore » flames. The most distinct characteristics is that flame stabilization does not rely on flow recirculation. Centrifugal force induced by swirl causes flow divergence, and the flame is maintained at where the local mass flux balances the burning rate. The flame speeds can be estimated based on the centerline velocity vector, which is locally normal to the flame brush. This flame geometry is the closest approximation to the 1-D planar flame for determining fundamental properties to advance turbulent combustion theories. 18 refs.« less