skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Regulation of Meiotic Recombination

Technical Report ·
DOI:https://doi.org/10.2172/1028811· OSTI ID:1028811

Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system for assaying recombination using tetrad analysis in a higher eukaryotic system (6). This system enabled the measurement of the frequency and distribution of recombination events at a genome wide level in wild type Arabidopsis (7), construction of genetic linkage maps which include positions for each centromere (8), and modeling of the strength and pattern of interference (9). This proposal extends the use of tetrad analysis in Arabidopsis by using it as the basis for assessing the phenotypes of mutants in genes important for recombination and the regulation of crossover interference and performing a novel genetic screen. In addition to broadening our knowledge of a classic genetic problem - the regulation of recombination by crossover interference - this proposal also provides broader impact by: generating pedagogical tools for use in hands-on classroom experience with genetics, building interdisciplinary collegial partnerships, and creating a platform for participation by junior scientists from underrepresented groups. There are three specific aims: (1) Isolate mutants in Arabidopsis MUS81 homologs using T-DNA and TILLING (2) Characterize recombination levels and interference in mus81 mutants (3) Execute a novel genetic screen, based on tetrad analysis, for genes that regulate meiotic recombination

Research Organization:
Univ. of North Carolina, Chapel Hill, NC (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
DOE Contract Number:
FG02-05ER15651
OSTI ID:
1028811
Report Number(s):
DOE/ER/15651-1; TRN: US201206%%353
Country of Publication:
United States
Language:
English