skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Online Monitoring to Enable Improved Diagnostics, Prognostics and Maintenance

Abstract

For both existing and new plant designs there are increasing opportunities and needs for the application of advanced online surveillance, diagnostic and prognostic techniques. These methods can continuously monitor and assess the health of nuclear power plant systems and components. The added effectiveness of such programs has the potential to enable holistic plant management, and minimize exposure to future and unknown risks. The 'NDE & On-line Monitoring' activities within the Advanced Instrumentation, Information and Control Systems (II&CS) Pathway are developing R&D to establish advanced condition monitoring and prognostics technologies to understand and predict future phenomena, derived from plant aging in systems, structures, and components (SSC). This research includes utilization of the enhanced functionality and system condition awareness that becomes available through the application of digital technologies at existing nuclear power plants for online monitoring and prognostics. The current state-of-the-art for on-line monitoring applied to active components (eg pumps, valves, motors) and passive structure (eg core internals, primary piping, pressure vessel, concrete, cables, buried pipes) is being reviewed. This includes looking at the current deployment of systems that monitor reactor noise, acoustic signals and vibration in various forms, leak monitoring, and now increasingly condition-based maintenance (CBM) for active components. The NDEmore » and on-line monitoring projects are designed to look beyond locally monitored CBM. Current trends include centralized plant monitoring of SSC, potential fleet-based CBM and technology that will enable operation and maintenance to be performed with limited on-site staff. Attention is also moving to systems that use online monitoring to permit longer term operation (LTO), including a prognostic or predictive element that estimates a remaining useful life (RUL). Many, if not all, active components (pumps, valves, motors etc.) can be well managed, routinely diagnosed, analyzed and upgraded as needed using a combination of periodic and online CBM. The ability to successfully manage passive systems and structures is seen as the key to LTO, particularly in the USA. New approaches will be demonstrated, including prognostics for passive structures, which is critical to maintaining safety and availability and to reducing operations and maintenance costs for NPP's. To provide proactive on-line monitoring that includes estimates for RUL new projects will include advanced sensors, better understanding of stressors and challenges faced in quantification of uncertainty associated with RUL. This program area will leverage insights from past experience in other industries and seek to demonstrate the feasibility of on-line monitoring and prognostics to support NPP LTO.« less

Authors:
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1028053
Report Number(s):
PNNL-SA-76974
830403000; TRN: US1105317
DOE Contract Number:  
AC05-76RL01830
Resource Type:
Journal Article
Journal Name:
Light Water Reactor Sustainability Newsletter
Additional Journal Information:
Journal Volume: 3
Country of Publication:
United States
Language:
English
Subject:
21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; 43 PARTICLE ACCELERATORS; ACOUSTICS; AGING; AVAILABILITY; CABLES; CONTROL SYSTEMS; MAINTENANCE; MANAGEMENT; MONITORING; MONITORS; MOTORS; NUCLEAR POWER PLANTS; PRESSURE VESSELS; REACTOR NOISE; SAFETY; SENSORS; SERVICE LIFE; SUPERCONDUCTING SUPER COLLIDER; VALVES; NDE; online diagnostics; prognostics; early degradation monitoring; fatigue

Citation Formats

Bond, Leonard J. Online Monitoring to Enable Improved Diagnostics, Prognostics and Maintenance. United States: N. p., 2011. Web.
Bond, Leonard J. Online Monitoring to Enable Improved Diagnostics, Prognostics and Maintenance. United States.
Bond, Leonard J. Tue . "Online Monitoring to Enable Improved Diagnostics, Prognostics and Maintenance". United States.
@article{osti_1028053,
title = {Online Monitoring to Enable Improved Diagnostics, Prognostics and Maintenance},
author = {Bond, Leonard J},
abstractNote = {For both existing and new plant designs there are increasing opportunities and needs for the application of advanced online surveillance, diagnostic and prognostic techniques. These methods can continuously monitor and assess the health of nuclear power plant systems and components. The added effectiveness of such programs has the potential to enable holistic plant management, and minimize exposure to future and unknown risks. The 'NDE & On-line Monitoring' activities within the Advanced Instrumentation, Information and Control Systems (II&CS) Pathway are developing R&D to establish advanced condition monitoring and prognostics technologies to understand and predict future phenomena, derived from plant aging in systems, structures, and components (SSC). This research includes utilization of the enhanced functionality and system condition awareness that becomes available through the application of digital technologies at existing nuclear power plants for online monitoring and prognostics. The current state-of-the-art for on-line monitoring applied to active components (eg pumps, valves, motors) and passive structure (eg core internals, primary piping, pressure vessel, concrete, cables, buried pipes) is being reviewed. This includes looking at the current deployment of systems that monitor reactor noise, acoustic signals and vibration in various forms, leak monitoring, and now increasingly condition-based maintenance (CBM) for active components. The NDE and on-line monitoring projects are designed to look beyond locally monitored CBM. Current trends include centralized plant monitoring of SSC, potential fleet-based CBM and technology that will enable operation and maintenance to be performed with limited on-site staff. Attention is also moving to systems that use online monitoring to permit longer term operation (LTO), including a prognostic or predictive element that estimates a remaining useful life (RUL). Many, if not all, active components (pumps, valves, motors etc.) can be well managed, routinely diagnosed, analyzed and upgraded as needed using a combination of periodic and online CBM. The ability to successfully manage passive systems and structures is seen as the key to LTO, particularly in the USA. New approaches will be demonstrated, including prognostics for passive structures, which is critical to maintaining safety and availability and to reducing operations and maintenance costs for NPP's. To provide proactive on-line monitoring that includes estimates for RUL new projects will include advanced sensors, better understanding of stressors and challenges faced in quantification of uncertainty associated with RUL. This program area will leverage insights from past experience in other industries and seek to demonstrate the feasibility of on-line monitoring and prognostics to support NPP LTO.},
doi = {},
url = {https://www.osti.gov/biblio/1028053}, journal = {Light Water Reactor Sustainability Newsletter},
number = ,
volume = 3,
place = {United States},
year = {2011},
month = {2}
}