skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantum Monte Carlo simulations of Hubbard type models

Journal Article · · Journal of Low Temperature Physics
DOI:https://doi.org/10.1007/BF00754940· OSTI ID:102564

The authors present a review of recent Quantum Monte-Carlo results for one- and two-dimensional Hubbard models. In one-dimension spectral properties are calculated with the maximum entropy method. At small doping, the one-particle excitations are characterized by a dispersive cosine-like band. Two different velocities for charge and spin-excitations are obtained which lead to a conformal charge c=0.98{+-}0.05. In two-dimensions, the authors concentrate on two methods to detect superconducting ground states without prior knowledge of the symmetry of the underlying pair-pair correlations: flux quantization and the temperature derivative of the superfluid density. Both methods are based on extensions of quantum Monte-Carlo algorithms to incorporate magnetic fields. The main results include numerical data which (a) confirm the Kosterlitz-Thouless transition in the attractive Hubbard model; (b) show the absence of superconductivity in the quarter filled repulsive Hubbard model; and finally (c) show no sign of a Kosterlitz-Thouless type transition in the three-band Hubbard model up to {beta}t{sub pd} = 12.5 and hole doping {delta} = 0.25.

Sponsoring Organization:
USDOE
OSTI ID:
102564
Report Number(s):
CONF-9309321-; ISSN 0022-2291; TRN: 95:019716
Journal Information:
Journal of Low Temperature Physics, Vol. 95, Issue 1-2; Conference: International workshop on cuprate and heavy fermion superconductors, Cologne (Germany), 27-30 Sep 1993; Other Information: PBD: Apr 1994
Country of Publication:
United States
Language:
English