skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Co-Registration of MEG and ULF MRI using a 7 channel low-Tc SQUID system

Conference ·
OSTI ID:1025546

In human brain imaging, e.g. pre-surgical mapping, it is highly desired to obtain images with high spatial and temporal resolution. However, no single imaging device is capable of producing both a high spatial resolution anatomical image and a high temporal resolution functional image. During the last couple of years significant efforts have been directed towards magnetic resonance imaging (MRI) in fields comparable to the Earth's field, i.e. microtesla fields, or lower fields. The fields in this range are called ultra-low fields (ULF). Interestingly, the idea of magnetic resonance at microtesla fields is more than 50 years old. In ULF MR it is essential to use pre-polarization to increase the signal-to-noise ratio of the signal from the precessing spins, since the magnetization from the measurement field alone is very small. Even with the present level of prepolarization the ULF images are not as highly resolved as their high-field counterparts. By using a 7 channel system equipped with low transition temperature (T{sub c}) Superconducting QUantum Interference Devices (SQUIDs) to perform both ULF MRI and magnetoencephalography (MEG), it is possible to coregister a lower resolution ULF MR image and an MEG image obtained during one run. Thereby, the MEG data is aligned to the ULF MR image after performing a calibration run with a phantom. The ULF MR image can then be used to align the MEG data onto a high-field MR image. Recently, our group presented the first brain images obtained by ULF MRI. The MR imaging was combined with an MEG session performed a posteriori. The subject's head was moved in between the MRI run and the MEG run and no reference coils were used to quantify the translation. The main reason for the translation of the head was to improve the coverage of the auditory evoked response. In this paper, we report interleaved ULF MRI and MEG measurements co-registered in the same system.

Research Organization:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC52-06NA25396
OSTI ID:
1025546
Report Number(s):
LA-UR-10-05166; LA-UR-10-5166; TRN: US201120%%595
Resource Relation:
Conference: Applied Superconductivity Conference ; August 1, 2010 ; Washington, DC
Country of Publication:
United States
Language:
English