skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaluation of Co-precipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials

Abstract

The focus of this report is the evaluation of various co-precipitation processes for use in the synthesis of mixed oxide feedstock powders for the Ceramic Fuels Technology Area within the Fuels Cycle R&D (FCR&D) Program's Advanced Fuels Campaign. The evaluation will include a comparison with standard mechanical mixing of dry powders and as well as other co-conversion methods. The end result will be the down selection of a preferred sequence of co-precipitation process for the preparation of nuclear fuel feedstock materials to be used for comparison with other feedstock preparation methods. A review of the literature was done to identify potential nitrate-to-oxide co-conversion processes which have been applied to mixtures of uranium and plutonium to achieve recycle fuel homogeneity. Recent studies have begun to study the options for co-converting all of the plutonium and neptunium recovered from used nuclear fuels, together with appropriate portions of recovered uranium to produce the desired mixed oxide recycle fuel. The addition of recycled uranium will help reduce the safeguard attractiveness level and improve proliferation resistance of the recycled fuel. The inclusion of neptunium is primarily driven by its chemical similarity to plutonium, thus enabling a simple quick path to recycle. For recycle fuel tomore » thermal-spectrum light water reactors (LWRs), the uranium concentration can be {approx}90% (wt.), and for fast spectrum reactors, the uranium concentration can typically exceed 70% (wt.). However, some of the co-conversion/recycle fuel fabrication processes being developed utilize a two-step process to reach the desired uranium concentration. In these processes, a 50-50 'master-mix' MOX powder is produced by the co-conversion process, and the uranium concentration is adjusted to the desired level for MOX fuel recycle by powder blending (milling) the 'master-mix' with depleted uranium oxide. In general, parameters that must be controlled for co-precipitation processes include (1) feed solution concentration adjustment, (2) precipitant concentration and addition methods, (3) pH, temperature, mixing method and time, (4) valence adjustment, (5) solid precipitate separation from the filtrate 'mother liquor,' generally by means of centrifugation or filtration, and (6) temperatures and times for drying, calcination, and reduction of the MOX product powder. Also a recovery step is necessary because of low, but finite solubility of the U/TRU metals in the mother liquor. The recovery step usually involves destruction of the residual precipitant and disposal of by-product wastes. Direct denitrations of U/TRU require fewer steps, but must utilize various methods to enable production of MOX with product characteristics that are acceptable for recycle fuel fabrication. The three co-precipitation processes considered for evaluation are (1) the ammonia co-precipitation process being developed in Russia, (2) the oxalate co-precipitation process, being developed in France, and (3) the ammonium-uranyl-plutonyl-carbonate (AUPuC) process being developed in Germany. Two direct denitration processes are presented for comparison: (1) the 'Microwave Heating (MH)' automated multi-batch process developed in Japan and (2) the 'Modified Direct Denitration (MDD)' continuous process being developed in the USA. Brief comparative descriptions of the U/TRU co-conversion processes are described. More complete details are provided in the references.« less

Authors:
 [1];  [1];  [1]
  1. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1024695
Report Number(s):
ORNL/TM-2011/164
AF5810000; NEAF224
DOE Contract Number:  
DE-AC05-00OR22725
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English

Citation Formats

Collins, Emory D, Voit, Stewart L, and Vedder, Raymond James. Evaluation of Co-precipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials. United States: N. p., 2011. Web. doi:10.2172/1024695.
Collins, Emory D, Voit, Stewart L, & Vedder, Raymond James. Evaluation of Co-precipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials. United States. doi:10.2172/1024695.
Collins, Emory D, Voit, Stewart L, and Vedder, Raymond James. Wed . "Evaluation of Co-precipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials". United States. doi:10.2172/1024695. https://www.osti.gov/servlets/purl/1024695.
@article{osti_1024695,
title = {Evaluation of Co-precipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials},
author = {Collins, Emory D and Voit, Stewart L and Vedder, Raymond James},
abstractNote = {The focus of this report is the evaluation of various co-precipitation processes for use in the synthesis of mixed oxide feedstock powders for the Ceramic Fuels Technology Area within the Fuels Cycle R&D (FCR&D) Program's Advanced Fuels Campaign. The evaluation will include a comparison with standard mechanical mixing of dry powders and as well as other co-conversion methods. The end result will be the down selection of a preferred sequence of co-precipitation process for the preparation of nuclear fuel feedstock materials to be used for comparison with other feedstock preparation methods. A review of the literature was done to identify potential nitrate-to-oxide co-conversion processes which have been applied to mixtures of uranium and plutonium to achieve recycle fuel homogeneity. Recent studies have begun to study the options for co-converting all of the plutonium and neptunium recovered from used nuclear fuels, together with appropriate portions of recovered uranium to produce the desired mixed oxide recycle fuel. The addition of recycled uranium will help reduce the safeguard attractiveness level and improve proliferation resistance of the recycled fuel. The inclusion of neptunium is primarily driven by its chemical similarity to plutonium, thus enabling a simple quick path to recycle. For recycle fuel to thermal-spectrum light water reactors (LWRs), the uranium concentration can be {approx}90% (wt.), and for fast spectrum reactors, the uranium concentration can typically exceed 70% (wt.). However, some of the co-conversion/recycle fuel fabrication processes being developed utilize a two-step process to reach the desired uranium concentration. In these processes, a 50-50 'master-mix' MOX powder is produced by the co-conversion process, and the uranium concentration is adjusted to the desired level for MOX fuel recycle by powder blending (milling) the 'master-mix' with depleted uranium oxide. In general, parameters that must be controlled for co-precipitation processes include (1) feed solution concentration adjustment, (2) precipitant concentration and addition methods, (3) pH, temperature, mixing method and time, (4) valence adjustment, (5) solid precipitate separation from the filtrate 'mother liquor,' generally by means of centrifugation or filtration, and (6) temperatures and times for drying, calcination, and reduction of the MOX product powder. Also a recovery step is necessary because of low, but finite solubility of the U/TRU metals in the mother liquor. The recovery step usually involves destruction of the residual precipitant and disposal of by-product wastes. Direct denitrations of U/TRU require fewer steps, but must utilize various methods to enable production of MOX with product characteristics that are acceptable for recycle fuel fabrication. The three co-precipitation processes considered for evaluation are (1) the ammonia co-precipitation process being developed in Russia, (2) the oxalate co-precipitation process, being developed in France, and (3) the ammonium-uranyl-plutonyl-carbonate (AUPuC) process being developed in Germany. Two direct denitration processes are presented for comparison: (1) the 'Microwave Heating (MH)' automated multi-batch process developed in Japan and (2) the 'Modified Direct Denitration (MDD)' continuous process being developed in the USA. Brief comparative descriptions of the U/TRU co-conversion processes are described. More complete details are provided in the references.},
doi = {10.2172/1024695},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Jun 01 00:00:00 EDT 2011},
month = {Wed Jun 01 00:00:00 EDT 2011}
}

Technical Report:

Save / Share: