skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of a triple modality small animal planar imaging system

Abstract

Recently small animal research utilizing nuclear medicine based imaging has been combined with structural anatomical imaging from x-ray radiography providing a powerful tool for animal researchers. The addition of a third modality is the goal of our instrumentation development. Thomas Jefferson National Accelerator Facility and Case Western Reserve University have been collaborating on the development of a planar imaging system which in addition to radiopharmaceutical based functional imaging and x-ray radiography structural imaging also allows for the in vivo bioluminescence imaging thus providing another functional imaging modality. For the gamma camera we use is a Hamamatsu position sensitive photomultiplier tube coupled to a pixellated NaI(TI) scintillator array with individual crystal elements 1 mm × 1 mm × 5 mm in size and a 0.25 mm septum between each element. The gamma camera has a 10 cm diameter active area and can be used for 125I, 99mT and 111In radionuclide imaging. To acquire anatomical information we are using a Rad-Icon Shad-o-Box X-ray detector that provides a field of view of 5 cm × 10 cm. The x-ray source is a Source-Ray compact x-ray generator. We are using a Princeton Instruments cooled CCD based detector for the imaging of the bio-distribution ofmore » bioluminescence. All three imaging instruments will be integrated into a single light tight / x-ray tight enclosure.« less

Authors:
Publication Date:
Research Org.:
Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1023953
Report Number(s):
JLAB-PHY-05-382; DOE/ER/40150-4957
TRN: US1104634
DOE Contract Number:
AC05-84ER40150
Resource Type:
Conference
Resource Relation:
Conference: IEEE 2005 NSS/MIC, 23-29 Oct. 2005, Puerto Rico
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; ANIMALS; BIOLUMINESCENCE; CEBAF ACCELERATOR; FUNCTIONALS; GAMMA CAMERAS; IN VIVO; NUCLEAR MEDICINE; PHOSPHORS; PHOTOMULTIPLIERS; RADIOISOTOPES; RADIOPHARMACEUTICALS; X-RAY RADIOGRAPHY; X-RAY SOURCES

Citation Formats

A. G. Weisenberger, Z. Lee, S. Majewski, B. Kross, V. Popov, B. Welch, R. Wojcik, C. Zorn. Development of a triple modality small animal planar imaging system. United States: N. p., 2006. Web. doi:10.1109/NSSMIC.2005.1596661.
A. G. Weisenberger, Z. Lee, S. Majewski, B. Kross, V. Popov, B. Welch, R. Wojcik, C. Zorn. Development of a triple modality small animal planar imaging system. United States. doi:10.1109/NSSMIC.2005.1596661.
A. G. Weisenberger, Z. Lee, S. Majewski, B. Kross, V. Popov, B. Welch, R. Wojcik, C. Zorn. Wed . "Development of a triple modality small animal planar imaging system". United States. doi:10.1109/NSSMIC.2005.1596661.
@article{osti_1023953,
title = {Development of a triple modality small animal planar imaging system},
author = {A. G. Weisenberger, Z. Lee, S. Majewski, B. Kross, V. Popov, B. Welch, R. Wojcik, C. Zorn},
abstractNote = {Recently small animal research utilizing nuclear medicine based imaging has been combined with structural anatomical imaging from x-ray radiography providing a powerful tool for animal researchers. The addition of a third modality is the goal of our instrumentation development. Thomas Jefferson National Accelerator Facility and Case Western Reserve University have been collaborating on the development of a planar imaging system which in addition to radiopharmaceutical based functional imaging and x-ray radiography structural imaging also allows for the in vivo bioluminescence imaging thus providing another functional imaging modality. For the gamma camera we use is a Hamamatsu position sensitive photomultiplier tube coupled to a pixellated NaI(TI) scintillator array with individual crystal elements 1 mm × 1 mm × 5 mm in size and a 0.25 mm septum between each element. The gamma camera has a 10 cm diameter active area and can be used for 125I, 99mT and 111In radionuclide imaging. To acquire anatomical information we are using a Rad-Icon Shad-o-Box X-ray detector that provides a field of view of 5 cm × 10 cm. The x-ray source is a Source-Ray compact x-ray generator. We are using a Princeton Instruments cooled CCD based detector for the imaging of the bio-distribution of bioluminescence. All three imaging instruments will be integrated into a single light tight / x-ray tight enclosure.},
doi = {10.1109/NSSMIC.2005.1596661},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Feb 01 00:00:00 EST 2006},
month = {Wed Feb 01 00:00:00 EST 2006}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Many studies in molecular biology deal with following the expression and regulation of a gene at different stages of an organism`s development or under different physiological conditions. Presently in situ hybridization and immunochemical assays are available to follow the gene expression at a single moment in time for one organism. One must sacrifice the organism to make a measurement, essentially taking a snap shot of the state of expression of the gene of interest. We have made progress on a new type of gene imaging technology which takes advantage of the emission properties of the radioisotope iodine 125 ({sup 125}I)more » as the probe and utilizes crystal scintillators and a position sensitive photomultiplier tube. Iodine 125 decays via electron capture emitting a 35 keV gamma-ray with the prompt emission of several 27-32 keV K{alpha} and K{beta} shell X-rays. Because of this a coincidence condition can be set to detect the {sup 125}I decays thus reducing background radiation contribution to the image. Mouse imaging studies of iodine uptake by the thyroid and melatonin receptor binding have been done with this detector system using low doses of {sup 125}I.« less
  • The authors have developed a multimodality system for imaging the biodistribution of biologically interesting ligands tagged with /sup 125/I. By incorporating a small fluoroscope as an additional modality, they have enhanced their small animal nuclear imaging system to include both X-rays and images from two Hamamatsu R3292 5'' diameter position sensitive photomultiplier tubes (PSPMT) viewing pixelated scintillators with image co-registration of 1.5 mm or better. Collimators placed between the animal and the scintillators can easily be interchanged and include CuBe parallel-hole collimators with a range of resolution and sensitivity combinations. The small X-ray fluoroscope provides 5 cm diameter images, severalmore » of which can readily be combined to provide structural anatomical information from the animal under study. The system has been tested by comparing the uptake of /sup 125/I (in NaI) in control mice and mice previously fed a solution of KI (potassium iodide) designed specific.« less
  • Our group is developing a scanner that combines x-ray, single gamma, and optical imaging on the same rotating gantry. Two functional modalities (SPECT and optical) are included because they have different strengths and weaknesses in terms of spatial and temporal decay lengths in the context of in vivo imaging, and because of the recent advent of multiple reporter gene constructs. The effect of attenuation by biological tissue on the detected intensity of the emitted signal was measured for both gamma and optical imaging. Attenuation by biological tissue was quantified for both the bioluminescent emission of luciferace and for the emissionmore » light of the near infrared fluorophore cyanine 5.5, using a fixed excitation light intensity. Experiments were performed to test the feasibility of using either single gamma or x-ray imaging to make depth-dependent corrections to the measured optical signal. Our results suggest that significant improvements in quantitation of optical emission are possible using straightforward correction techniques based on information from other modalities. Development of an integrated scanner in which data from each modality are obtained with the animal in a common configuration will greatly simplify this process.« less
  • The development and initial evaluation of a high-resolution single photon emission tomography (SPECT) based system to image the biodistribution of radiolabeled tracers such as Tc-99m and I-125 in unrestrained/un-anesthetized mice. An infrared (IR) based position tracking apparatus has been developed and integrated into a SPECT gantry. The tracking system is designed to measure the spatial position of a mouse's head at a rate of 10-15 frames per second with sub-millimeter accuracy. The high resolution, gamma imaging detectors are based on pixelated NaI(Tl) crystal scintillator arrays, arrays of compact position-sensitive photomultiplier tubes and novel readout circuitry for lower device cost whilemore » retaining high spatial resolution. Two SPECT gamma camera detector heads based on a 4 /spl times/ 8 array of Hamamatsu R8520-C12 position sensitive photomultiplier tubes have been built and installed onto the gantry. The IR landmark-based pose measurement and tracking system is under development to provide animal position data during a SPECT scan. The animal position and orientation data acquired by the IR tracking system is used for motion correction during the tomographic image reconstruction.« less