skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Electronic Properties of Superatom States of Hollow Molecules

Abstract

Electronic and optical properties of molecules and molecular solids are traditionally considered from the perspective of the frontier orbitals and their intermolecular interactions. How molecules condense into crystalline solids, however, is mainly attributed to the long-range polarization interaction. In this Account, we show that long-range polarization also introduces a distinctive set of diffuse molecular electronic states, which in quantum structures or solids can combine into nearly-free-electron (NFE) bands. These NFE properties, which are usually associated with good metals, are vividly evident in sp2 hybridized carbon materials, specifically graphene and its derivatives. The polarization interaction is primarily manifested in the screening of an external charge at a solid/vacuum interface. It is responsible for the universal image potential and the associated unoccupied image potential (IP) states, which are observed even at the He liquid/vacuum interface. The molecular electronic properties that we describe are derived from the IP states of graphene, which float above and below the molecular plane and undergo free motion parallel to it. Rolling or wrapping a graphene sheet into a nanotube or a fullerene transforms the IP states into diffuse atom-like orbitals that are bound primarily to hollow molecular cores, rather than the component atoms. Therefore, we named themmore » the superatom molecular orbitals (SAMOs). Like the excitonic states of semiconductor nanostructures or the plasmonic resonances of metallic nanoparticles, SAMOs of fullerene molecules, separated by their van der Waals distance, can combine to form diatomic molecule-like orbitals of C60 dimers. For larger aggregates, they form NFE bands of superatomic quantum structures and solids. The overlap of the diffuse SAMO wavefunctions in van der Waals solids provides a different paradigm for band formation than the valence or conduction bands formed by interaction of the more tightly bound, directional highest occupied molecular orbitals (HOMOs) or the lowest unoccupied molecular orbitals (LUMOs). Therefore, SAMO wavefunctions provide insights into the design of molecular materials with potentially superior properties for electronics. Physicists and chemists have thought of fullerenes as atom-like building blocks of electronic materials, and superatom properties have been attributed to other elemental gas-phase clusters based on their size-dependent electronic structure and reactivity. Only in the case of fullerenes, however, do the superatom properties survive as delocalized electronic bands even in the condensed phase. We emphasize, however, that the superatom states and their bands are usually unoccupied and therefore do not contribute to intermolecular bonding. Instead, their significance lies in the electronic properties they confer when electrons are introduced, such as when they are excited optically or probed by the atomically sharp tip of a scanning tunneling microscope. We describe the IP states of graphene as the primary manifestation of the universal polarization response of a molecular sheet and how these states in turn define the NFE properties of materials derived from graphene, such as graphite, fullerenes, and nanotubes. Through low-temperature scanning tunneling microscopy (LT-STM), time-resolved two-photon photoemission spectroscopy (TR-2PP), and density functional theory (DFT), we describe the real and reciprocal space electronic properties of SAMOs for single C60 molecules and their self-assembled 1D and 2D quantum structures on single-crystal metal surfaces.« less

Authors:
; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org.:
USDOE
OSTI Identifier:
1023178
DOE Contract Number:  
AC05-76RL01830
Resource Type:
Journal Article
Journal Name:
Accounts of Chemical Research, 44(5):360-368
Additional Journal Information:
Journal Volume: 44; Journal Issue: 5; Journal ID: ISSN 0001-4842
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; ATOMS; BONDING; CARBON; DENSITY FUNCTIONAL METHOD; DIMERS; ELECTRONIC STRUCTURE; ELECTRONS; FULLERENES; FUNCTIONALS; GRAPHITE; NANOSTRUCTURES; NANOTUBES; OPTICAL PROPERTIES; PHOTOEMISSION; POLARIZATION; ROLLING; SCANNING TUNNELING MICROSCOPY; SPECTROSCOPY; TUNNELING; VALENCE; Environmental Molecular Sciences Laboratory

Citation Formats

Feng, Min, Zhao, Jin, Huang, Tian, Zhu, Xiaoyang, and Petek, Hrvoje. The Electronic Properties of Superatom States of Hollow Molecules. United States: N. p., 2011. Web. doi:10.1021/ar1001445.
Feng, Min, Zhao, Jin, Huang, Tian, Zhu, Xiaoyang, & Petek, Hrvoje. The Electronic Properties of Superatom States of Hollow Molecules. United States. doi:10.1021/ar1001445.
Feng, Min, Zhao, Jin, Huang, Tian, Zhu, Xiaoyang, and Petek, Hrvoje. Tue . "The Electronic Properties of Superatom States of Hollow Molecules". United States. doi:10.1021/ar1001445.
@article{osti_1023178,
title = {The Electronic Properties of Superatom States of Hollow Molecules},
author = {Feng, Min and Zhao, Jin and Huang, Tian and Zhu, Xiaoyang and Petek, Hrvoje},
abstractNote = {Electronic and optical properties of molecules and molecular solids are traditionally considered from the perspective of the frontier orbitals and their intermolecular interactions. How molecules condense into crystalline solids, however, is mainly attributed to the long-range polarization interaction. In this Account, we show that long-range polarization also introduces a distinctive set of diffuse molecular electronic states, which in quantum structures or solids can combine into nearly-free-electron (NFE) bands. These NFE properties, which are usually associated with good metals, are vividly evident in sp2 hybridized carbon materials, specifically graphene and its derivatives. The polarization interaction is primarily manifested in the screening of an external charge at a solid/vacuum interface. It is responsible for the universal image potential and the associated unoccupied image potential (IP) states, which are observed even at the He liquid/vacuum interface. The molecular electronic properties that we describe are derived from the IP states of graphene, which float above and below the molecular plane and undergo free motion parallel to it. Rolling or wrapping a graphene sheet into a nanotube or a fullerene transforms the IP states into diffuse atom-like orbitals that are bound primarily to hollow molecular cores, rather than the component atoms. Therefore, we named them the superatom molecular orbitals (SAMOs). Like the excitonic states of semiconductor nanostructures or the plasmonic resonances of metallic nanoparticles, SAMOs of fullerene molecules, separated by their van der Waals distance, can combine to form diatomic molecule-like orbitals of C60 dimers. For larger aggregates, they form NFE bands of superatomic quantum structures and solids. The overlap of the diffuse SAMO wavefunctions in van der Waals solids provides a different paradigm for band formation than the valence or conduction bands formed by interaction of the more tightly bound, directional highest occupied molecular orbitals (HOMOs) or the lowest unoccupied molecular orbitals (LUMOs). Therefore, SAMO wavefunctions provide insights into the design of molecular materials with potentially superior properties for electronics. Physicists and chemists have thought of fullerenes as atom-like building blocks of electronic materials, and superatom properties have been attributed to other elemental gas-phase clusters based on their size-dependent electronic structure and reactivity. Only in the case of fullerenes, however, do the superatom properties survive as delocalized electronic bands even in the condensed phase. We emphasize, however, that the superatom states and their bands are usually unoccupied and therefore do not contribute to intermolecular bonding. Instead, their significance lies in the electronic properties they confer when electrons are introduced, such as when they are excited optically or probed by the atomically sharp tip of a scanning tunneling microscope. We describe the IP states of graphene as the primary manifestation of the universal polarization response of a molecular sheet and how these states in turn define the NFE properties of materials derived from graphene, such as graphite, fullerenes, and nanotubes. Through low-temperature scanning tunneling microscopy (LT-STM), time-resolved two-photon photoemission spectroscopy (TR-2PP), and density functional theory (DFT), we describe the real and reciprocal space electronic properties of SAMOs for single C60 molecules and their self-assembled 1D and 2D quantum structures on single-crystal metal surfaces.},
doi = {10.1021/ar1001445},
journal = {Accounts of Chemical Research, 44(5):360-368},
issn = {0001-4842},
number = 5,
volume = 44,
place = {United States},
year = {2011},
month = {5}
}