skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Younger Dryas Boundary (YDB) impact : physical and statistical impossibility.

Abstract

The YDB impact hypothesis of Firestone et al. (2007) is so extremely improbable it can be considered statistically impossible in addition to being physically impossible. Comets make up only about 1% of the population of Earth-crossing objects. Broken comets are a vanishingly small fraction, and only exist as Earth-sized clusters for a very short period of time. Only a small fraction of impacts occur at angles as shallow as proposed by the YDB impact authors. Events that are exceptionally unlikely to take place in the age of the Universe are 'statistically impossible'. The size distribution of Earth-crossing asteroids is well-constrained by astronomical observations, DoD satellite bolide frequencies, and the cratering record. This distribution can be transformed to a probability density function (PDF) for the largest expected impact of the past 20,000 years. The largest impact of any kind expected over the period of interest is 250 m. Anything larger than 2 km is exceptionally unlikely (probability less than 1%). The impact hypothesis does not rely on any sound physical model. A 4-km diameter comet, even if it fragmented upon entry, would not disperse or explode in the atmosphere. It would generate a crater about 50 km in diameter with amore » transient cavity as deep as 10 km. There is no evidence for such a large, young crater associated with the YDB. There is no model to suggest that a comet impact of this size is capable of generating continental-wide fires or blast damage, and there is no physical mechanism that could cause a 4-km comet to explode at the optimum height of 500 km. The highest possible altitude for a cometary optimum height is about 15 km, for a 120-m diameter comet. To maximize blast and thermal damage, a 4-km comet would have to break into tens of thousands fragments of this size and spread out over the entire continent, but that would require lateral forces that greatly exceed the drag force, and would not conserve energy. Airbursts are decompression explosions in which projectile material reaches high temperature but not high pressure states. Meteoritic diamonds would be vaporized. Nanodiamonds at the YDB are not evidence for an airburst or for an impact.« less

Authors:
Publication Date:
Research Org.:
Sandia National Laboratories
Sponsoring Org.:
USDOE
OSTI Identifier:
1023008
Report Number(s):
SAND2010-5356C
TRN: US201118%%680
DOE Contract Number:
AC04-94AL85000
Resource Type:
Conference
Resource Relation:
Conference: Proposed for presentation at the Geological Society of America Annual Meeting & Exposition held October 21-November 3, 2010 in Denver, CO.
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ALTITUDE; ASTEROIDS; COMETS; DIAMONDS; DISTRIBUTION; EXPLOSIONS; HYPOTHESIS; PROBABILITY; PROBABILITY DENSITY FUNCTIONS; PROJECTILES; SATELLITES; TRANSIENTS; UNIVERSE

Citation Formats

Boslough, Mark Bruce Elrick. Younger Dryas Boundary (YDB) impact : physical and statistical impossibility.. United States: N. p., 2010. Web.
Boslough, Mark Bruce Elrick. Younger Dryas Boundary (YDB) impact : physical and statistical impossibility.. United States.
Boslough, Mark Bruce Elrick. Sun . "Younger Dryas Boundary (YDB) impact : physical and statistical impossibility.". United States. doi:.
@article{osti_1023008,
title = {Younger Dryas Boundary (YDB) impact : physical and statistical impossibility.},
author = {Boslough, Mark Bruce Elrick},
abstractNote = {The YDB impact hypothesis of Firestone et al. (2007) is so extremely improbable it can be considered statistically impossible in addition to being physically impossible. Comets make up only about 1% of the population of Earth-crossing objects. Broken comets are a vanishingly small fraction, and only exist as Earth-sized clusters for a very short period of time. Only a small fraction of impacts occur at angles as shallow as proposed by the YDB impact authors. Events that are exceptionally unlikely to take place in the age of the Universe are 'statistically impossible'. The size distribution of Earth-crossing asteroids is well-constrained by astronomical observations, DoD satellite bolide frequencies, and the cratering record. This distribution can be transformed to a probability density function (PDF) for the largest expected impact of the past 20,000 years. The largest impact of any kind expected over the period of interest is 250 m. Anything larger than 2 km is exceptionally unlikely (probability less than 1%). The impact hypothesis does not rely on any sound physical model. A 4-km diameter comet, even if it fragmented upon entry, would not disperse or explode in the atmosphere. It would generate a crater about 50 km in diameter with a transient cavity as deep as 10 km. There is no evidence for such a large, young crater associated with the YDB. There is no model to suggest that a comet impact of this size is capable of generating continental-wide fires or blast damage, and there is no physical mechanism that could cause a 4-km comet to explode at the optimum height of 500 km. The highest possible altitude for a cometary optimum height is about 15 km, for a 120-m diameter comet. To maximize blast and thermal damage, a 4-km comet would have to break into tens of thousands fragments of this size and spread out over the entire continent, but that would require lateral forces that greatly exceed the drag force, and would not conserve energy. Airbursts are decompression explosions in which projectile material reaches high temperature but not high pressure states. Meteoritic diamonds would be vaporized. Nanodiamonds at the YDB are not evidence for an airburst or for an impact.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Aug 01 00:00:00 EDT 2010},
month = {Sun Aug 01 00:00:00 EDT 2010}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: