skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Aqua Ions-Graphene Interfacial and Confinement Behavior: Insights from isobaric-isothermal molecular dynamics

Journal Article · · Journal of Physical Chemistry A
DOI:https://doi.org/10.1021/jp110318n· OSTI ID:1021987

We carry out a systematic micro-structural characterization of the solidfluid interface (SFI) of water and simple metal chloride aqueous solutions in contact with a free standing plate or with two such plates separated by an inter-plate distance 0 ! h( ) ! 30 at ambient conditions via isothermalisobaric molecular dynamics. With this characterization we target the interrogation of the system in search for answers to fundamental questions regarding the structure of the external and internal (confined) SFI s, the effect of the differential hydration behavior among species and its link to species expulsion from confinement. For water at ambient conditions we found that the structure of the external SFI s is independent of the interplate distance h in the range 0 ! h( ) ! 30 , i.e., the absence of wallmediated correlation effects between external and internal SFI s, and that for h < 9 the slit-pores de-wet. Moreover, we observed a selective expulsion of ions caused by the differential hydration between the anion and the cations with a consequent charging of the slit-pore. All these observations were interpreted in terms of the axial profiles for precisely defined order parameters including tetrahedral configuration, hydrogen bonding, and species coordination numbers.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1021987
Journal Information:
Journal of Physical Chemistry A, Vol. 115, Issue 23; ISSN 1089--5639
Country of Publication:
United States
Language:
English