skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Combined ultrasonic elastic wave velocity and microtomography measurements at high pressures

Journal Article · · Rev. Sci. Instrum.
DOI:https://doi.org/10.1063/1.3552185· OSTI ID:1021788

Combined ultrasonic and microtomographic measurements were conducted for simultaneous determination of elastic property and density of noncrystalline materials at high pressures. A Paris-Edinburgh anvil cell was placed in a rotation apparatus, which enabled us to take a series of x-ray radiography images under pressure over a 180{sup o} angle range and construct accurately the three-dimensional sample volume using microtomography. In addition, ultrasonic elastic wave velocity measurements were carried out simultaneously using the pulse reflection method with a 10{sup o} Y-cut LiNbO{sub 3} transducer attached to the end of the lower anvil. Combined ultrasonic and microtomographic measurements were carried out for SiO{sub 2} glass up to 2.6 GPa and room temperature. A decrease in elastic wave velocities of the SiO{sub 2} glass was observed with increasing pressure, in agreement with previous studies. The simultaneous measurements on elastic wave velocities and density allowed us to derive bulk (K{sub s}) and shear (G) moduli as a function of pressure. K{sub s} and G of the SiO{sub 2} glass also decreased with increasing pressure. The negative pressure dependence of K{sub s} is stronger than that of G, and as a result the value of K{sub s} became similar to G at 2.0-2.6 GPa. There is no reason why we cannot apply this new technique to high temperatures as well. Hence the results demonstrate that the combined ultrasonic and microtomography technique is a powerful tool to derive advanced (accurate) P-V-Ks-G-(T) equations of state for noncrystalline materials.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Organization:
FOREIGNNSF
OSTI ID:
1021788
Journal Information:
Rev. Sci. Instrum., Vol. 82, Issue (2) ; 02, 2011; ISSN 0034-6748
Country of Publication:
United States
Language:
ENGLISH