skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Self-assembly of photo-reduced graphene-titania films.

Conference ·
OSTI ID:1021625

In an aim to develop photo-responsive composites, the UV photo-reduction of aqueous titanium oxide nanoparticle-graphene oxide (TiO{sub 2}-GO) dispersions (Lambert et al. J Phys. Chem. 2010 113 (46), 19812-19823) was undertaken. Photo-reduction led to the formation of a black precipitate as well as a soluble portion, comprised of titanium oxide nanoparticle-reduced graphene oxide (TiO{sub 2}-RGO). When allowed to slowly evaporate, self assembled titanium oxide nanoparticle-graphene oxide (SA-TiO{sub 2}-RGO) films formed at the air-liquid interface of the solution. The thickness of SARGO-TiO{sub 2} films range from {approx}30-100 nm when deposited on substrates, and appear to be comprised of a mosaic assembly of graphene nanosheets and TiO{sub 2}, as observed by scanning electron microscopy. Raman spectroscopy and X-ray photoelectron spectroscopy indicate that the graphene oxide is only partially reduced in the SA-TiO{sub 2}-RGO material. These films were also deposited onto inter-digitated electrodes and their photo-responsive behavior was examined. UV-exposure lead to a {approx} 200 kOhm decrease in resistance across the device, resulting in a cathodically biased film. The cathodic bias of the films was utilized for the subsequent reduction of Ag(NO{sub 3}) into silver (Ag) nanoparticles, forming a ternary Ag-(SA-RGO-TiO{sub 2}) composite. Various aspects of the self assembled films, their photoconductive properties as well as potential applications will be presented.

Research Organization:
Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC04-94AL85000
OSTI ID:
1021625
Report Number(s):
SAND2010-4845C; TRN: US201117%%219
Resource Relation:
Conference: Proposed for presentation at the NINE Conference held July 22, 2010 in Albuquerque, NM.
Country of Publication:
United States
Language:
English